The DFT is one and the same as the DFS. The DFT maps a discrete and periodic sequence of values with period $N$, that is
$$x[n] = x[n+N] \quad \quad \forall n \in \mathbb{Z}$$
to another discrete and periodic sequence
$$X[k] = X[k+N] \quad \quad \forall k \in \mathbb{Z}$$
and the iDFT maps it back. the discreteness in one domain causes the periodicity in the other domain, and since the mapping is 1-to-1, you can say that periodicity in one domain causes discreteness in the other. both periodic sequences are fully defined by $N$ complex numbers and a practical iDFT and DFT maps those two finite-length sets of numbers back and forth to each other.
Although not commonly done, it's perfectly okay to generalize the DFT and iDFT to be
$$ X[k] = \sum\limits_{n=n_0}^{n_0+N-1} x[n] \ e^{-j 2 \pi nk/N} $$
$$ x[n] = \frac1N \sum\limits_{k=k_0}^{k_0+N-1} X[k] \ e^{j 2 \pi nk/N} $$
$n, n_0, k, k_0$ can be any integers.
so the choice of $k_0 = -\frac{N}{2}$ comes from the convenience of pairing $X[-k]$ to $X[k]$. since, in general
$$ X[k] = \Re\{X[k]\} + j \Im\{X[k]\} $$
and if $\Im\{x[n]\}=0$ for all $n$, then
$$ X[-k] = X^*[k] = \Re\{X[k]\} - j \Im\{X[k]\} $$
then you can say, about reconstructing $x[n]$, that if $N$ is even
$$ x[n] = \frac1N \sum\limits_{k=-\frac{N}{2}}^{\frac{N}{2}-1} X[k] \ e^{j 2 \pi nk/N} $$
if $N$ is odd, then
$$ x[n] = \frac1N \sum\limits_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} X[k] \ e^{j 2 \pi nk/N} $$
and you can sorta plug in $n = f_\text{s} t$ to reconstruct bandlimited $x(t)$ outa $x[n]$.
in the $N$ even case, then you have an extra term at Nyquist, the $k=-\frac{N}{2}$ term, for that you cannot know both the amplitude and phase of that sinusoid. you must assume one or the other. often people only keep the $\cos(\pi f_\text{s} t)$ term at Nyquist.
$$ \begin{align}
x[n] & = \frac1N \sum\limits_{k=-\frac{N}{2}}^{\frac{N}{2}-1} X[k] \ e^{j 2 \pi nk/N} \\
& = \frac1N \left( X[0] + X[N/2] \cos(\pi n) + \sum\limits_{k=1}^{\frac{N}{2}-1} X[k] e^{j 2 \pi nk/N} \ + \ X[-k] e^{-j 2 \pi nk/N} \right) \\
& = \frac1N \left( X[0] + X[N/2] \cos(\pi n) \right) \\ & \quad + \frac1N \sum\limits_{k=1}^{\frac{N}{2}-1} (\Re\{X[k]\} + j \Im\{X[k]\}) e^{j 2 \pi nk/N} \ + \ (\Re\{X[k]\} - j \Im\{X[k]\}) e^{-j 2 \pi nk/N} \\
& = \frac1N \left( X[0] + X[N/2] \cos(\pi n) \right) \\ & \quad + \frac1N \sum\limits_{k=1}^{\frac{N}{2}-1} 2\Re\{X[k]\} \frac{e^{j 2 \pi nk/N} + e^{-j 2 \pi nk/N}}{2} + j (2j) \Im\{X[k]\} \frac{e^{j 2 \pi nk/N} - e^{-j 2 \pi nk/N}}{2j} \\
& = \frac1N \left( X[0] + X[N/2] \cos(\pi n) \right) \\ & \quad + \frac2N \sum\limits_{k=1}^{\frac{N}{2}-1} \Re\{X[k]\} \frac{e^{j 2 \pi nk/N} + e^{-j 2 \pi nk/N}}{2} - \Im\{X[k]\} \frac{e^{j 2 \pi nk/N} - e^{-j 2 \pi nk/N}}{2j} \\
& = \frac1N \left( X[0] + X[N/2] \cos(\pi n) \right) \\ & \quad + \frac2N \sum\limits_{k=1}^{\frac{N}{2}-1} \Re\{X[k]\} \cos(2 \pi nk/N) - \Im\{X[k]\} \sin(2 \pi nk/N) \\
\end{align} $$
for $N$ odd, you can go through the same song and dance, but there is no Nyquist term and it comes out as
$$ x[n] = \frac1N X[0] + \frac2N \sum\limits_{k=1}^{\frac{N-1}{2}} \Re\{X[k]\} \cos(2 \pi nk/N) - \Im\{X[k]\} \sin(2 \pi nk/N) $$
for odd $N$, all of these discrete-time sinusoids can be understood as a properly-sampled bandlimited periodic, continuous-time, real signal, $x(t)$:
$$ x[n] \triangleq x(nT) = x(n/f_\text{s}) $$
or setting $ n \leftarrow f_\text{s} t $
$$ x(t) = \frac1N X[0] + \frac2N \sum\limits_{k=1}^{\frac{N-1}{2}} \Re\{X[k]\} \cos(2 \pi (k/N) f_\text{s} t) - \Im\{X[k]\} \sin(2 \pi (k/N) f_\text{s} t) $$
but when $N$ is even, the Nyquist term is a little more ambiguous:
$$ \begin{align}
x(t) & = \frac1N \left( X[0] + X[N/2] \cos(2 \pi (f_\text{s}/2) t) \right) \\ & \quad + \frac2N \sum\limits_{k=1}^{\frac{N}{2}-1} \Re\{X[k]\} \cos(2 \pi k f_\text{s} t) - \Im\{X[k]\} \sin(2 \pi k f_\text{s} t) \\
& = \frac1N \left( X[0] + X[N/2] \cos(2 \pi (f_\text{s}/2) t) \right) \\ & \quad + \frac2N \sum\limits_{k=1}^{\frac{N}{2}-1} \Re\{X[k]\} \cos(2 \pi (k/N) f_\text{s} t) - \Im\{X[k]\} \sin(2 \pi (k/N) f_\text{s} t) \\
& = \frac1N \left( X[0] + X[N/2] \cos(2 \pi (f_\text{s}/2) t) + A_x \sin(2 \pi (f_\text{s}/2) t) \right) \\ & \quad + \frac2N \sum\limits_{k=1}^{\frac{N}{2}-1} \Re\{X[k]\} \cos(2 \pi (k/N) f_\text{s} t) - \Im\{X[k]\} \sin(2 \pi (k/N) f_\text{s} t) \\
\end{align} $$
where $A_x$ can be any number, because that term will be zero at the sampling instances, when $t = nT = n/f_\text{s}$.
looking at it from a magnitude/phase POV, for $N$ odd
$$ x(t) = \frac{X[0]}{N} + \frac2N \sum\limits_{k=1}^{\frac{N-1}{2}} |X[k]| \cos(2 \pi (k/N) f_\text{s} t + \arg\{X[k]\}) $$
and for $N$ even
$$ \begin{align} x(t) & = \frac{X[0]}{N} + \frac{X[N/2]}{N \cos(\theta)} \cos(2 \pi (f_\text{s}/2) t + \theta) \\ & \quad + \frac2N \sum\limits_{k=1}^{\frac{N}{2}-1} |X[k]| \cos(2 \pi (k/N) f_\text{s} t + \arg\{X[k]\}) \end{align}$$
where
$$ \Re\{X[k]\} = |X[k]| \cos(\arg\{X[k]\}) $$
$$ \Im\{X[k]\} = |X[k]| \sin(\arg\{X[k]\}) $$
or
$$ |X[k]| = \sqrt{\Re\{X[k]\}^2 + \Im\{X[k]\}^2} $$
$$ \arg\{X[k]\} = \operatorname{atan2}(\Im\{X[k]\}, \Re\{X[k]\}) $$
and $\theta$ is the phase of the Nyquist component and can be any real value except $\pm \frac{\pi}{2}$ or $\frac{\pi}{2}+ m \pi$ for integer $m$ (because you cannot divide by zero). the samples $x[n] \triangleq x(n/f_\text{s})$ will come out the same regardless of the phase of the Nyquist component as long as the amplitude of the component is adjusted accordingly by dividing by $\cos(\theta)$.
Thanks for taking the time out for your elaborate answer. I have a few follow up questions:
Q1. From your second point, you say that $y[-N/2]$ doesn't exist. And I agree with that. But then the course slides use the second equation that I posted in the question. How does one interpret $y[n]$ when $n=-N/2$ in that equation?
Q2. The sole purpose of deriving $(3)$ in your answer is just to realize that the computations can be halved and leverage that fact right?
– GrowinMan Apr 02 '16 at 21:21
– Gilles Apr 02 '16 at 22:16Q1.We're still doing a $N$-point DFT of $y[n]$. One could write $y[-N/2]$ as you did and do half the summation but only if a change of variable to let's $n=m-N/2$ was done and also that $y[n]$ is symmetric such that $y[n]=y[N-n]$. If there was a change of variables that would apply to the $n$ exponent on the exponential. But strictly going from the definition $y[-N/2]$ is undefined.Q2.Yes, not only that but also that $\left|X(N-k)\right| = \left|X(k)\right|$ and $\angle X(N-k) = -\angle X(k)$, and also see that for certain $k$ values $X(k)$ are real (not complex) values.
– Gilles Apr 02 '16 at 22:16Q3.There is no benefit in doing so, as the spectrum characteristics can be deducted from half of the values. Most of spectra you'll encounter in textbooks are single-side because of the symmetry. And there is no actual physical meaning to negative frequencies, see this post and comments.\begin{align}
X_i[k] &= -\sum_{n=0}^{N-1}\left[ x_r[n]\sin\left(\frac{2\pi kn}{N} \right)-x_i[n]\cos\left(\frac{2\pi kn}{N} \right)\right] \But\qquad tan\left(\frac{2\pi kn}{N}\right) = \frac{x_i[n]}{x_r[n]} \end{align}
So does $X_i[k]=0$ all the time?
– GrowinMan Oct 13 '16 at 09:22