I am studying a course in signal processing, currently we are examining Fourier transforms. I got stuck on an exercise with an inverse Fourier transform.
I am supposed to find the inverse Fourier transform to the signal $$x(\omega)=\cos^2(\omega)$$
I make use of : $$x(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}\cos^2(\omega)e^{j\omega n} d\omega$$
Eulers formula gives: $$\cos^2(\omega)= (\frac{1}{2}e^{j\omega}-\frac{1}{2}e^{-j\omega})^2=\frac{1}{4}(e^{2j\omega}+2+e^{-2j\omega})$$
So
$$\begin{align}x(n)&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{1}{4}(e^{2j\omega}+2+e^{-2j\omega})e^{j\omega n} d\omega\\ &=\frac{1}{8\pi}\int_{-\pi}^{\pi}e^{j\omega (n+2)}+2e^{j\omega n}+e^{j\omega (n-2)} d\omega\\ &=\frac{1}{8\pi}[\frac{e^{j\omega (n+2)}}{n+2}+\frac{e^{j\omega n}}{n}+\frac{e^{j\omega (n-2)}}{n-2}]_{-\pi}^\pi\\ &=\frac{1}{8\pi}(\frac{e^{(n+2)}}{n+2}+\frac{e^{n}}{n}+\frac{e^{(n-2)}}{n-2})[e^{j\omega}]_{-\pi}^\pi\\ &=\frac{1}{8\pi}(\frac{e^{(n+2)}}{n+2}+\frac{e^{n}}{n}+\frac{e^{(n-2)}}{n-2})(e^{j\pi}-e^{-j\pi}) \\ &=\frac{1}{8\pi}(\frac{e^{(n+2)}}{n+2}+\frac{e^{n}}{n}+\frac{e^{(n-2)}}{n-2})\cdot0\\ &=0 \end{align}$$
This is not correct, and i don't quite know where i made a mistake. Any help or insights is appreciated. Please and thank you.