If $f$ is locally Lipschitz on $X$ and $X$ is compact, then $f$ is Lipschitz on $X$.
My proof: Since $f$ is locally Lipschitz on $X$, for each $x ∈ X$ there exists an open $B_x$ containing $x$ such that $f$ is Lipschitz on $B_x$. Consider the collection of all such $B_x$. This collection forms an open cover of $X$ and so there is a finite sub-collection $\{B_1, B_2, . . . , B_n\}$ which also covers $X$, since $X$ is compact. Since $f$ is Lipschitz on each $B_i$, there is an $B_i$ such that $d(f(x_i), f(y_i)) \leq M_i d(x_i, y_i)$ for all $x_i, y_i \in Wi$, for $i ∈ \{1, 2, . . . , n\}$. Then taking $B = max\{B_1, B_2, . . . , B_n\}$, we see that $f$ is Lipschitz on $X$.
Is my solution correct?
Can we use the fact of compact metric space that every sequence in $X$ has a convergent sub-sequence to prove the same fact??