If $n=1$ we can compute $\int _\mathbb{R} \frac{sin^{2}t}{t^{2}}dt$ by using Parseval's formula since $\widehat{1_{[-1,1]}}(x)=2\frac{\sin x}{x}$. We obtain $\int _\mathbb{R} \frac{sin^{2}t}{t^{2}}dt=\pi$. Is there a similar way in order to compute $\int _\mathbb{R}\frac{sin^{2n}t}{t^{2n}}dt$ ?
It seems to be difficult to compute $\int 1_{[-1,1]}\ast \ldots \ast 1_{[-1,1]}(x)^2dx$.