This is fairly straight forward: $$\sum_{p\space\text{prime}}^x \frac{1}{p_x} \sim \ln(\ln(x))$$
And if $$\sum_{c\space \text{composite}}^x \frac{1}{c_x}\sim f(x)$$
Then what is $f(x)$?
This is fairly straight forward: $$\sum_{p\space\text{prime}}^x \frac{1}{p_x} \sim \ln(\ln(x))$$
And if $$\sum_{c\space \text{composite}}^x \frac{1}{c_x}\sim f(x)$$
Then what is $f(x)$?
Since every positive integer is either $1$, a prime, or composite, we have
$$\sum_{\substack{c \leqslant x\\ c\text{ composite}}} \frac{1}{c} = \sum_{2 \leqslant k \leqslant x} \frac{1}{k} - \sum_{\substack{p\leqslant x\\ p \text{ prime}}} \frac{1}{p}.$$
For the first sum we know
$$\sum_{2\leqslant k \leqslant x} \frac{1}{k} = \ln (x) + \gamma - 1 + O(x^{-1})$$
where $\gamma$ is the Euler-Mascheroni constant. For the sum of the reciprocals of the primes, Mertens' second theorem tells us
$$\sum_{p \leqslant x} \frac{1}{p} = \ln (\ln x) + M + O((\ln x)^{-1}),$$
where $M$ is the Meissel-Mertens constant, so that together we find
$$\sum_{\substack{c \leqslant x\\ c\text{ composite}}} \frac{1}{c} = \ln (x) - \ln (\ln x) + (\gamma - 1 - M) + O((\ln x)^{-1}).$$
If $1$ is to be considered composite, the subtraction of $1$ is of course to be omitted.