11

How can I find the value of the sum $\sum_{k=1}^{\infty}\frac{k^n}{k!}$? for example for $n=6$, we have
$$\sum_{k=1}^{\infty}\frac{k^6}{k!}=203e.$$

user91500
  • 5,606

2 Answers2

18

The answer is $eB_n$, where $B_n$ is the $n$th Bell number. This is known as Dobinski's formula.

Casteels
  • 11,292
  • 4
  • 27
  • 38
12

I thought it might be useful to add the derivation of the formula given in Casteels answer.

The defining equation for Stirling Numbers of the Second Kind is $$ \newcommand{\stirtwo}[2]{\left\{#1\atop#2\right\}} k^n=\sum_{j=0}^n\stirtwo{n}{j}\binom{k}{j}\,j!\tag{1} $$ Therefore, $$ \begin{align} \sum_{k=0}^\infty\frac{k^n}{k!} &=\sum_{k=0}^\infty\sum_{j=0}^n\stirtwo{n}{j}\binom{k}{j}\frac{j!}{k!}\\ &=\sum_{j=0}^n\stirtwo{n}{j}\sum_{k=j}^\infty\frac1{(k-j)!}\\ &=e\sum_{j=0}^n\stirtwo{n}{j}\tag{2} \end{align} $$ It is worth noting that the Bell Numbers are $$ B_n=\sum_{j=0}^n\stirtwo{n}{j}\tag{3} $$ Thus, $$ \sum_{k=0}^\infty\frac{k^n}{k!}=e\,B_n\tag{4} $$

robjohn
  • 345,667
  • 3
    Nice question! It was listed as related to this question, which I answered a while ago. It got some attention recently and so I took a look at some of the related questions. – robjohn Nov 09 '15 at 14:01