$${p^{e+1} \choose p\cdot k } \equiv {p^{e} \choose k } \mod p^{e+1} $$ $p$ is prime, $e$ and $k$ are non negative integers.
I am struggling with a proof of the above proposition, in the case where $p=2$.
This is trivially true for $k=0$, then I use induction on $k$.
Let $k \gt 0 $ and suppose that $ {p^{e+1} \choose {p\cdot (k-1)} } \equiv {p^{e} \choose k-1 } \mod p^{e+1} $ (induction hypothesis)
${p^{e+1} \choose p\cdot k }={p^{e+1} \choose p\cdot (k-1))} \frac{p^{e+1}-k\cdot p +p }{k\cdot p} \frac{p^{e+1}-k\cdot p +p-1 }{k\cdot p-1}\cdot\cdot\cdot\frac{p^{e+1}-k\cdot p +1 }{k\cdot p-( p-1)} $
$({k\ p-1}) \cdot\cdot ({k\ p-( p-1))}{p^{e+1} \choose p\ k }={p^{e+1} \choose p\ (k-1))}\frac{p^e-k+1}{k}(p^{e+1}-k\ p +p-1) \cdot\cdot(p^{e+1}-k\cdot p +1) $ $({k\ p-1}) \cdot\cdot ({k\ p-( p-1))}{p^{e+1} \choose p\ k }\equiv{p^{e+1} \choose p\ (k-1))}\frac{p^e-k+1}{k}(-k\ p +p-1) \cdot\cdot(-k\cdot p +1) \mod p^{e+1}$
$({k\ p-1}) \cdot\cdot ({k\ p-( p-1))}{p^{e+1} \choose p\ k }\equiv{{p^{e} \choose k-1 }}\frac{p^e-k+1}{k}(-k\ p +p-1) \cdot\cdot(-k\cdot p +1) \mod p^{e+1}$
by induction hypothesis, then
$({k\ p-1}) \cdot\cdot ({k\ p-( p-1))}{p^{e+1} \choose p\ k }\equiv{{p^{e} \choose k }}(-1)^{p-1}(k\ p -p+1) \cdot\cdot(k\cdot p -1) \mod p^{e+1}$
then, since the factors $ ({k\ p-1}), \cdot\cdot, ({k\ p-( p-1))}$ are not divisible by $p$, they can be removed and here is what is obtained :
$${p^{e+1} \choose p\cdot k } \equiv (-1)^{p-1} {p^{e} \choose k } \mod
p^{e+1} $$
which is the desired result when $p$ is odd, but when $p=2$ that is:
$${2^{e+1} \choose 2\cdot k } \equiv - {2^{e} \choose k } \mod
2^{e+1} $$ or
$${2^{e+1} \choose 2\cdot k }- {2^{e} \choose k } \equiv - 2\cdot {2^{e} \choose k } \mod 2^{e+1} $$
The greatest power of 2 which divides ${2^{e} \choose k } $ is $2^{e -f}$, where $2^{f}$ is the greatest power of $2$ which divides $k$. Then if $k$ is odd, that is still ok, but if $k$ is even, $f\gt 0$ and the greatest power of $2$ which divides $- 2\cdot {2^{e} \choose k }$ is $2^{e+1 -f}\lt 2^{e+1}$. This cannot be zero modulo $2^{e+1}$.
But this is against the numerical evidence ex $${2^{2+1} \choose 2\cdot 2 }- {2^{2} \choose 2 }= 64 \equiv 0 \mod 2^{2+1} $$
Where am I wrong?