Let $$f(x) = \begin{cases}\begin{align*}&\cos{\dfrac{1}{x}}, &x \neq0 \\ &0, &x=0. \end{align*}\end{cases}$$
Is the function $F(x) = \displaystyle \int_{0}^x f dx$ differentiable at $0$?
We can see that the function $f(x)$ is continuous everywhere except $x=0$. In order to show differentiability we will need to show the derivatives from the left and right are equal. So we need to show that $$\lim_{h \to 0^+} \dfrac{F(x+h)-F(x)}{h} = \lim_{h \to 0^-} \dfrac{F(x+h)-F(x)}{h}.$$ The derivative from the right is $$\lim_{h \to 0^+} \dfrac{F(x+h)-F(x)}{h} = \lim_{h \to 0^+} \dfrac{\displaystyle \int_{0}^x\cos{\dfrac{1}{x+h}}-\int_{0}^x\cos{\dfrac{1}{x}}}{h}$$ and the derivative from the left is $$\lim_{h \to 0^-} \dfrac{F(x+h)-F(x)}{h} = \lim_{h \to 0^-} \dfrac{\displaystyle \int_{0}^x\cos{\dfrac{1}{x+h}}-\int_{0}^x\cos{\dfrac{1}{x}}}{h}.$$ I am not sure how to proceed.