I am trying to prove something by induction, and in induction step I had to prove this $$1+ \sum_{k=1}^{\lceil{\frac{n-1}{2}}\rceil} (-1)^{k}\frac{(t^2)^{2k}}{(2k)!} = \sum_{k=0}^{\lfloor{\frac{n}{2}}\rfloor}(-1)^k \frac{(t^2)^{2k}}{(2k)!}. $$ Any Idea?
Edit : (the first one is solved) what about this equality $$ -\sum_{k=0}^{\lfloor{\frac{n-1}{2}}\rfloor}(-1)^{k-1} \frac{(t^2)^{2k+1}}{(2k+1)!} = \sum_{k=1}^{\lceil{\frac{n}{2}}\rceil} (-1)^{k-1}\frac{(t^2)^{2k-1}}{(2k-1)!} $$