Exercise:
$$\lim\limits_{n \to \infty}{[n(\sqrt[n]{a} - 1)]} \text{ where a > 0}$$
Attempt:
$\lim\limits_{n \to \infty}{[n(\sqrt[n]{a} - 1)]}$
Let $m = \sqrt[n]{a}$.
$m = \sqrt[n]{a} \longrightarrow m^n = a \longrightarrow n = \log_ma = \frac{\ln a}{\ln m}$
$\lim\limits_{n \to \infty}{\sqrt[n]{a}} = 1 \longrightarrow \lim\limits_{m \to 1}{[\frac{\ln a}{\ln m}(m - 1)]} = D$
$D = \lim\limits_{m \to 1}{[\frac{\ln a}{\ln m}(m - 1)]} = \ln a \lim\limits_{m \to 1}{\frac{m - 1}{\ln m}} = \ln a (\lim\limits_{m \to 1}{\frac{\ln m}{m - 1}})^{-1} = \ln a C^{-1} = \frac{\ln a}{ln C}$
$C = \lim\limits_{m \to 1}{\frac{\ln m}{m - 1}} = 1$ (omitted steps)
$D = \frac{\ln a}{1} = \ln a$
$$\lim\limits_{n \to \infty}{[n(\sqrt[n]{a} - 1)]} = \ln a$$
Request:
Is there a more elegant solution to this exercise?