Ramanujan gave the following series evaluation $$1+9\left(\frac{1}{4}\right)^{4}+17\left(\frac{1\cdot 5}{4\cdot 8}\right)^{4}+25\left(\frac{1\cdot 5\cdot 9}{4\cdot 8\cdot 12}\right)^{4}+\cdots=\dfrac{2\sqrt{2}}{\sqrt{\pi}\Gamma^{2}\left(\dfrac{3}{4}\right)}$$ in his first and famous letter to G H Hardy. The form of the series is similar to his famous series for $1/\pi$ and hence a similar approach might work to establish the above evaluation. Thus if $$f(x) =1+\sum_{n=1}^{\infty}\left(\frac{1\cdot 5\cdots (4n-3)}{4\cdot 8\cdots (4n)}\right)^{4}x^{n}$$ then Ramanujan's series is equal to $f(1)+8f'(1)$. Unfortunately the series for $f(x) $ does not appear to be directly related to elliptic integrals or amenable to Clausen's formula used in the proofs for his series for $1/\pi$.
Is there any way to proceed with my approach? Any other approaches based on hypergeometric functions and their transformation are also welcome.
Update: This question is now solved, thanks to the people at mathoverflow.