Here is a generalization of this interesting problem.
Using residues we can find the sum for a given power $q$ of the fractions.
Let the sum to be calculated be
$$s(q)=f(q,0)+\sum _{k=1}^{\infty } f(q,k)$$
where the summand is
$$f(q,k)=(5 k+1)^{-q}-(5 k+2)^{-q}-(5 k+3)^{-q}+(5 k+4)^{-q}$$
We have extracted the summand with $k=0$ from the sum. The remaining sum
$$s_1(q) =\sum _{k=1}^{\infty } f(q,k) $$
can be calculated with the method explained in http://algo.inria.fr/flajolet/Publications/FlSa98.pdf from residues with the kernel function $H(-k)$ which essentially expresses an infinite sum by a finite sum over residues.
In our case it leads to
$$s_1(q))=-\sum _{j=1}^4 \text{res}\left(H_{-k} f(q,k),\left\{k,-\frac{j}{5}\right\}\right)$$
The notation means: take the residue of the expression $H_{-k} f(q,k)$ at the position $-\frac{j}{5}$ of the j-th pole of $f(q,k)$ in the complex k-plane and sum over all four poles $(j=1..4)$.
For the first two values of $q$ this gives for $s$
$$s(1) = \frac{5}{12}-\frac{\psi ^{(0)}\left(\frac{1}{5}\right)}{5}+\frac{\psi ^{(0)}\left(\frac{2}{5}\right)}{5}+\frac{\psi ^{(0)}\left(\frac{3}{5}\right)}{5}-\frac{\psi ^{(0)}\left(\frac{4}{5}\right)}{5}$$
$$s(2) = \frac{101}{144}+\frac{\psi ^{(1)}\left(\frac{1}{5}\right)}{25}-\frac{\psi ^{(1)}\left(\frac{2}{5}\right)}{25}-\frac{\psi ^{(1)}\left(\frac{3}{5}\right)}{25}+\frac{\psi ^{(1)}\left(\frac{4}{5}\right)}{25}$$
Typically, the polygamma function $\psi$ of degree $q-1$ and fractional argument. The generalization to higher values of $q$ is obvious.
Letting Mathematica do the simplification of the $\psi$-functions we obtain the following list in the format $\{q, s(q)\}$
$$
\begin{array}{l}
\left\{1,\frac{\log \left(\frac{1}{2} \left(3+\sqrt{5}\right)\right)}{\sqrt{5}}\right\} \\
\left\{2,\frac{4 \pi ^2}{25 \sqrt{5}}\right\} \\
\left\{3,\frac{1475}{1728}-\frac{\psi ^{(2)}\left(\frac{1}{5}\right)}{250}+\frac{\psi ^{(2)}\left(\frac{2}{5}\right)}{250}+\frac{\psi ^{(2)}\left(\frac{3}{5}\right)}{250}-\frac{\psi ^{(2)}\left(\frac{4}{5}\right)}{250}\right\} \\
\left\{4,\frac{8 \pi ^4}{375 \sqrt{5}}\right\} \\
\left\{5,\frac{240275}{248832}-\frac{\psi ^{(4)}\left(\frac{1}{5}\right)}{75000}+\frac{\psi ^{(4)}\left(\frac{2}{5}\right)}{75000}+\frac{\psi ^{(4)}\left(\frac{3}{5}\right)}{75000}-\frac{\psi ^{(4)}\left(\frac{4}{5}\right)}{75000}\right\} \\
\end{array}
$$
Better knowledge than mine about fractional argument polygamma function can possibly lead to further simplification.
The results for even $q$ have a particularly simple form:
$$
\begin{array}{l}
\left\{2,\frac{4 \pi ^2}{25 \sqrt{5}}\right\} \\
\left\{4,\frac{8 \pi ^4}{375 \sqrt{5}}\right\} \\
\left\{6,\frac{536 \pi ^6}{234375 \sqrt{5}}\right\} \\
\left\{8,\frac{5776 \pi ^8}{24609375 \sqrt{5}}\right\} \\
\left\{10,\frac{3302008 \pi ^{10}}{138427734375 \sqrt{5}}\right\} \\
\end{array}
$$
Notice that the result for $q=1$ (the original task) has been found by all contributors, that for $q=2$ was first provided here by Jack D'Aurizio with another method.