(This is an addendum to MacLeod's answer and where I got that elliptic curve.)
I. To see how to use MacLeod's solution to find infinitely many eight $7$th powers equal to a $7$th power, expand the expression,
$$F(x) = (x+a)^7+(x-a)^7+(mx+b)^7+(mx-b)^7\\-(x+c)^7-(x-c)^7-(mx+d)^7-(mx-d)^7$$
and collecting powers of $x$,
$$F(x) = 42(a^2+m^5b^2-c^2-m^5d^2)x^5 + 70(a^4+m^3b^4-c^4-m^3d^4)x^3 + 14(a^6+mb^6-c^6-md^6)x$$
If we can find $a,b,c,d,m$ such that,
$$a^2+m^5b^2=c^2+m^5d^2\tag1$$
$$a^4+m^3b^4=c^4+m^3d^4\tag2$$
then we can get rid of the $x^5$ and $x^3$ terms and only the linear term $x$ is left. Thus,
$$14(a^6+mb^6-c^6-md^6)x = \\(x+a)^7+(x-a)^7+(mx+b)^7+(mx-b)^7\\-(x+c)^7-(x-c)^7-(mx+d)^7-(mx-d)^7$$
and we let $x = 14^6(a^6+mb^6-c^6-md^6)^6\,v^7$ for arbitrary $v$.
Therefore, the LHS becomes a $7$th power and we get a polynomial identity in the variable $v$ of a $7$th power equal to eight $7$th powers.
II. To get rid of the $x^5$ and $x^3$ terms, let $\color{blue}{m=5}$. Using Brahmagupta's identity,
$$(p r + m q s)^2 +m(-q r + p s)^2 = (p r - m q s)^2 +m(q r + p s)^2$$
eq. $(1)$ is easily solved as,
$$(a,\;b,\;c,\;d) = (p r + 3125 q s,\; -q r + p s,\; p r - 3125 q s,\; q r + p s)$$
and eq. $(2)$ becomes,
$$(25 p^2 - q^2) r^2 = (p^2 - 5^{12} q^2) s^2\tag3$$
Without loss of generality, let $q=1$. To solve $(3)$, it must be,
$$(25 p^2 - 1)(p^2 - 5^{12} ) = w^2$$
Assume it to be the square,
$$(25 p^2 - 1)(p^2 - 5^{12} ) = \big(5p^2 + (-x/10 + 5^6)\big)^2\tag4 $$
Expand to get,
$$100 p^2 (x - 78126^2) = x(x - 4\times5^7)$$
Multiply both sides by $(x - 78126^2)$ and we have the elliptic curve,
$$x(x - 78126^2)(x - 4\times5^7)=y^2\tag5$$
with MacLeod's solution,
$$x = \Bigl(\frac{1115500181050003597405480\sqrt{2245}}{94839007729639076870541}\Bigr)^2$$
Retracing the steps and scaling, one can then get integer $p,q,r,s$,
$$p =26495849279233847921447334543677665845247100\\
q =848947621992638248200474987563356720299231909\\
r =626004927447821946628577048253429765183543983525\\
s =39573486494385206930358492946164451904255363$$
then $a,b,c,d$ become $93$-digit integers to solve $(1),(2)$ for $m=5$. This implies the identity $F(x)$ involve integers with at least $93\times6\times7 \approx 3900$ digits.