This is tedious and unsophisticated, but don't knock it, it works! :)
As well as answering the present question, it also answers the linked question, prove $\frac{1}{13}<\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{99}{100}<\frac{1}{12}$.
We need a preliminary lemma:
If
$$
k = \left(1 - \frac{1}{52^2}\right)\left(1 - \frac{1}{56^2}\right)\cdots\left(1 - \frac{1}{96^2}\right),
$$
then
$$
\frac{383}{384} < k < \frac{1300}{1303}.
$$
Rounding up and down, as appropriate, this is approximately
$$
0.997395 < k < 0.997698,
$$
but of course we avoid using such calculations.
Proof. By the Weierstrass product inequality, we have
$$
1 - s < k < \frac{1}{1 + s},
$$
where
$$
s = \frac{1}{52^2} + \frac{1}{56^2} + \cdots + \frac{1}{96^2} =
\frac{1}{16}\left(\frac{1}{13^2} + \frac{1}{14^2} + \cdots + \frac{1}{24^2}\right).
$$
Telescoping,
\begin{align*}
16s & <
\frac{1}{12\cdot13} + \frac{1}{13\cdot14} + \cdots + \frac{1}{23\cdot24}
= \frac{1}{24}, \\
16s & >
\frac{1}{13\cdot14} + \frac{1}{14\cdot15} + \cdots + \frac{1}{24\cdot25}
= \frac{12}{325},
\end{align*}
therefore
$$
1 - \frac{1}{384} < k < \frac{1}{1 + \frac{3}{1300}},
$$
as required. $\square$
The number we wish to approximate is
$$
P = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{99}{100}
= \frac{51\cdot53\cdot55\cdots97\cdot99}{2^{25}\cdot4\cdot8\cdot12\cdots96\cdot100}
= kQ,
$$
where
\begin{gather*}
Q = \frac{52^2\cdot56^2\cdots96^2\cdot99}{2^{75}\cdot25!}
= \frac{13\cdot14\cdots24\cdot99}{2^{27}\cdot12!\cdot25}
= \frac{13\cdot15\cdot17\cdot19\cdot21\cdot23\cdot99}{2^{21}\cdot6!\cdot25} \\
= \frac{7\cdot13\cdot17\cdot19\cdot23\cdot99}{2^{25}\cdot25}.
\end{gather*}
Therefore, using the bounds obtained for $k$ in the lemma,
\begin{equation}
\tag{$1$}\label{ineq:1}
\frac{7\cdot13\cdot17\cdot19\cdot23\cdot33\cdot383}{2^{32}\cdot25}
< P <
\frac{7\cdot13^2\cdot17\cdot19\cdot23\cdot99}{2^{23}\cdot1303}.
\end{equation}
Although this is well within the range of easy hand calculation, I lazily used a calculator for most of the work (only doubling $2^{22}\cdot1303 = 5{,}465{,}178{,}112$ at the last stage by hand), to get
\begin{equation}
\tag{$2$}\label{ineq:2}
\frac{8{,}544{,}456{,}921}{107{,}374{,}182{,}400} < P < \frac{870{,}062{,}193}{10{,}930{,}356{,}224}.
\end{equation}
Approximately, rounding up and down again,
$$
0.079576 < P < 0.079601.
$$
One way to "simplify" \eqref{ineq:1} (although it seems simpler to me to calculate \eqref{ineq:2} and be done with it!) is as follows:
For the upper bound, observe that $7\cdot13\cdot19 = 1729 = 1 + 12^3$ (famously!), and $1302 = 2\cdot3\cdot7\cdot31$, so
$$
\frac{7\cdot13\cdot19}{1303} < \frac{1728}{2\cdot3\cdot7\cdot31} = \frac{288}{217} < \frac{288}{216} = \frac{4}{3},
$$
(as one can now easily verify with hindsight), therefore
$$
P < \frac{13\cdot17\cdot23\cdot99}{2^{21}\cdot3} < \frac{17\cdot300\cdot100}{2^{11}\cdot3\cdot1000} = \frac{85}{1024} < \frac{1}{12}.
$$
For the lower bound, first simplify $Q$ by noticing that $7\cdot17\cdot19\cdot23 = 52003 > 52000 = 2^5\cdot5^3\cdot13$, whence
$$
Q > \frac{5\cdot13^2\cdot99}{2^{20}} = \frac{5\cdot13\cdot1287}{2^{20}} > \frac{5\cdot13\cdot1280}{2^{20}} = \frac{5^2\cdot13}{2^{12}},
$$
and then, instead of using the lower bound from the lemma directly, weaken it to $P > \frac{64}{65}Q$, which gives
$$
P > \frac{5}{64} > \frac{1}{13}.
$$
For a better idea of the precision of this calculation, we can rewrite \eqref{ineq:2} as
$$
\frac{489{,}609{,}908}{870{,}062{,}193}
< \frac{1}{P} - 12 <
\frac{4{,}840{,}699{,}348}{8{,}544{,}456{,}921},
$$
whence (this could be done by hand, although again I used a calculator)
$$
\frac{1}{12.57} < P < \frac{1}{12.56}.
$$