$\tan^{-1}x+\tan^{-1}y+\tan^{-1}z=\tan^{-1}\dfrac{x+y+z-xyz}{1-xy-yz-zx}$ true for all $x$ ?
This expression is found without mentioning the domain of $x,y,z$, but I don't think its true for all $x,y,z$ as the case with the expression for $\tan^{-1}x+\tan^{-1}y$, but I have trouble proving it.
So what is the complete expression for $\tan^{-1}x+\tan^{-1}y+\tan^{-1}z$ ?
\begin{align} \tan^{-1}x+\tan^{-1}y+\tan^{-1}z&= \begin{cases}\tan^{-1}\left(\dfrac{x+y}{1-xy}\right)+\tan^{-1}z, &xy < 1 \\[1.5ex] \pi + \tan^{-1}\left(\dfrac{x+y}{1-xy}\right)+\tan^{-1}z, &xy>1,\:\:x,y>0 \\[1.5ex] -\pi + \tan^{-1}\left(\dfrac{x+y}{1-xy}\right)+\tan^{-1}z, &xy>1,\:\:x,y<0 \end{cases}\\ &= \end{align}