Theorem(Green's formula). Assume $U$ is a bounded, open subset of $\mathbb R^n$, and $\partial U$ is $C^1$. Let $u,v\in C^2(\bar{U})$. Then
$$\int_UDu\cdot Dv\,dx=-\int_U u\Delta v\,dx+\int_{\partial U}\frac{\partial v}{\partial \nu}u\,dS.$$
We can use this to show the $n-$dimensional case.
Set
$$\phi(r):=\frac1{\text{area}(S_r)}\int_{S_r}u^2(y)\,dS(y)=\frac1{\text{area}(S_1)}\int_{S_1}u^2(rz)\,dS(z).$$
Then
$$\phi'(r)=\frac1{\text{area}(S_1)}\int_{S_1}2u(rz)Du(rz)\cdot z\,dS(z),$$
and consequently, using Green's formula, we compute
\begin{align*}
\phi'(r)&=2\frac1{\text{area}(S_r)}\int_{S_r}u(y)Du(y)\cdot\frac yr\,dS(y)\\&=2\frac1{\text{area}(S_r)}\int_{S_r}u\frac{\partial u}{\partial \nu}\,dS\\&=2\frac1{\text{area}(S_r)}\left(\int_{B_r}Du\cdot Du\,dx+\int_{B_r}u\Delta u\,dx\right)\\&=2\frac1{\text{area}(S_r)}\int_{B_r}|Du|^2\,dx\geq 0.
\end{align*}
Hence $\phi(r)$ is increasing.
Addendum: From above we can get
$$\frac1{\text{area}(S_r)}\int_{S_r}u^2\,dS=\phi(r)\geq \lim_{r\to 0}\phi(r)=u^2(0),$$
since $\phi$ is continuous at $r=0$, which can be proven using the method in a previous post.