Let $X, Y$ be Banach spaces and $T \in B(X, Y )$ be linear operator. Show that if $x_n \rightharpoonup x$ in $X$, then $Tx_n \rightharpoonup Tx$ in $Y$ .
My attempt
since $T \in B(X, Y )$, $\|T\| < \infty$ , given that $x_n \rightharpoonup x$, choose $N$ such that $\|\langle x_n,z\rangle-\langle x,z\rangle\| \le \frac{\epsilon}{\|T\|} , \ \forall n>N , \forall z\in X. \ \ \ $ Then;
\begin{align} \|\langle Tx_n,z\rangle-\langle Tx,z\rangle\| & = \|\langle T(x_n-x),z\rangle\|\\ & \le \|T\|\|\langle (x_n-x),z\rangle\| \\ & = \|T\|\|\langle x_n,z\rangle-\langle x,z\rangle\| \\ & \le \|T\|\frac{\epsilon}{\|T\|} = \epsilon , \ \ \forall z \in X \end{align}
\begin{align} |\langle Tx_n,z\rangle-\langle Tx,z\rangle| & = |\langle T(x_n-x),z\rangle|\ & \le |T||\langle (x_n-x),z\rangle| \ & = |T||\langle x_n,z\rangle-\langle x,z\rangle| \ & \le |T|\frac{\epsilon}{|T|} = \epsilon \end{align}
– domath Mar 31 '20 at 17:44