$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
I_{n} & \equiv \bbox[5px,#ffd]{\int_{0}^{\pi}{\cos\pars{nx} -\cos\pars{na} \over \cos\pars{x} - \cos\pars{a}}\,\dd x}
\\[5mm] & =
\int_{0}^{\pi}{\on{T}_{n}\pars{\cos\pars{x}} -\on{T}_{n}\pars{\cos\pars{a}} \over \cos\pars{x} - \cos\pars{a}}\,\dd x
\end{align}
where $\ds{\on{T}_{n}\pars{z}}$ is the
Chebyshev Polynomial of the First Kind.
$\ds{\on{T}_{n}\pars{z}}$ expansion in powers of $\ds{z}$ is given by
$$\!\!\!\!\!
\on{T}_{n}\pars{z} = \sum_{r = 0}^{\left\lfloor n/2\right\rfloor}t_{nr}\,z^{n - 2r}\,,\,\,\,
t_{nr} \equiv
{1 \over 2}\,n\,{\pars{-1}^{r} \over n - r}
{n - r \choose r}2^{n - 2r}
$$
\begin{align}
I_{n} & =
\sum_{r = 0}^{\left\lfloor n/2\right\rfloor}t_{nr}
\int_{0}^{\pi}{%
\cos^{n - 2r\,}\pars{x} - \cos^{n - 2r\,}\pars{a} \over \cos\pars{x} - \cos\pars{a}}\,\dd x
\\[5mm] & =
\sum_{r = 0}^{\left\lfloor n/2\right\rfloor}t_{nr}
\sum_{k = 0}^{n - 1}\
\\ & \int_{0}^{\pi}
\cos^{\pars{n - 2r}k\,\,}\pars{x}
\cos^{\pars{n - 2r}\pars{n - 1 - k}}\,\,\,\pars{a}\,\dd x
\\[5mm] = &\
\bbx{\sum_{r = 0}^{\left\lfloor n/2\right\rfloor}\
\sum_{k = 0}^{n - 1}A_{knr}\
\cos^{\pars{n - 2r}\pars{n - 1 - k}}\,\,\,\pars{a}}
\label{1}\tag{1}
\\ &
\end{align}
where
$$
\left\{\begin{array}{rcl}
\ds{A_{knr}} & \ds{\equiv} & \ds{t_{nr}\int_{0}^{\pi}
\cos^{\pars{n - 2r}k\,\,}\pars{x}\,\dd x}
\\[2mm]
\ds{\int_{0}^{\pi}\cos^{p}\pars{x}\,\dd x} & \ds{=} &
\left\{\begin{array}{lcl}
\ds{\root{\pi}\,{\Gamma\pars{\bracks{1 + p}/2} \over
\Gamma\pars{1 + p/2}}} & \mbox{if} & \ds{p\ \mbox{is}\ even}
\\
\ds{0} && \mbox{otherwise}
\end{array}\right.
\end{array}\right.
$$
The power of
$\ds{\cos\pars{a}}$, in (\ref{1}), can be rewritten as a linear combination of
$\ds{\cos\pars{k a}}$ by using
again the above cited polynomial.
For instance,
$$\!\!\!\!\!
\begin{array}{|c|c|}\hline
\ds{n} & \ds{I_{n}} \\ \hline
\ds{1} & \ds{\pi}
\\[1mm] \hline
\ds{2} & \ds{2\pi\cos\pars{a}}
\\[1mm] \hline
\ds{3} & \ds{\pi + 2\pi\cos\pars{2a}}
\\[1mm] \hline
\ds{4} & \ds{2\pi\cos\pars{a} + 2\pi\cos\pars{3a}}
\\[1mm] \hline
\ds{5} & \ds{\pi + 2\pi\cos\pars{2a} + 2\pi\cos\pars{4a}} \\[1mm] \hline
\ds{6} & \ds{2\pi\cos\pars{a} + 2\pi\cos\pars{3a} +
2\pi\cos\pars{5a}} \\[1mm] \hline
\ds{7} & \ds{\pi + 2\pi\cos\pars{2a} + 2\pi\cos\pars{4a} +
2\pi\cos\pars{6a}} \\[1mm] \hline
\ds{8} & \ds{2\pi\cos\pars{a} + 2\pi\cos\pars{3a} + 2\pi\cos\pars{5a} +
2\pi\cos\pars{7a}} \\[1mm] \hline
\end{array}
$$
The
$\ds{\color{red}{pattern}}$ is
$$
\bbx{\!\!\!\!\! I_{n} =
\left\{\begin{array}{lcl}
\ds{\pi} & \mbox{if} & \ds{n = 1}
\\
\ds{\bracks{n\ odd}\pi + 2\pi\sum_{k = 0}^{\left\lfloor n/2 - 1\right\rfloor}\cos\pars{\bracks{n - 1 - 2k}a}}
& \mbox{if} & \ds{n \geq 2}
\end{array}\right.} \\
$$