Let $r>0$ and $k\ge0$. Then
\begin{align*}
\biggl[\frac{1}{(1+x^2)^r}\biggr]^{(k)}&=\sum_{j=0}^{k}\frac{\textrm{d}^j}{\textrm{d} u^j}\biggl(\frac{1}{u^r}\biggr) B_{k,j}(2x,2,0,\dotsc,0)\\
&=\sum_{j=0}^{k}\frac{\langle-r\rangle_j}{u^{r+j}} 2^jB_{k,j}(x,1,0,\dotsc,0)\\
&=\sum_{j=0}^{k}\frac{\langle-r\rangle_j}{(1+x^2)^{r+j}} 2^j \frac{1}{2^{k-j}}\frac{k!}{j!}\binom{j}{k-j}x^{2j-k}\\
&=\frac{k!}{2^kx^k(1+x^2)^r} \sum_{j=0}^{k}\langle-r\rangle_j\frac{2^{2j}}{j!}\binom{j}{k-j}\frac{x^{2j}}{(1+x^2)^{j}},
\end{align*}
where $u=u(x)=1+x^2$, the notation $B_{k,j}$ denotes the Bell polynomials of the second, and $\langle-r\rangle_j$ stands for the falling factorial. This means that
\begin{equation*}
P_k(x)=\frac{k!}{2^k}\frac{(1+x^2)^k}{x^k} \sum_{j=0}^{k}\langle-r\rangle_j\frac{2^{2j}}{j!}\binom{j}{k-j}\frac{x^{2j}}{(1+x^2)^{j}}
\end{equation*}
for $k\ge0$. I believe that this result would be useful for answering this question.
For knowledge of those notions, terminology, and concepts employed above, please refer to the following reference.
Reference
- Feng Qi, Da-Wei Niu, Dongkyu Lim, and Yong-Hong Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, Journal of Mathematical Analysis and Applications 491 (2020), no. 2, Paper No. 124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.