I am trying to understand the following computation for the Fourier Transform of a Radial Function on $\mathbb R^n$. I shall ask questions in-line.
Suppose $n\ge 2$, $f\in L^1(\Bbb R^n)$, and $f(x) = \psi(|x|)$ for all $x\in \Bbb R^n$, for some $\psi:[0,\infty)\to \Bbb C$. We know that if $f\in L^1(\Bbb R^n)$, then $$\int_{\Bbb R^n} f \, d\mathcal L^n = \int_{S^{n-1}} \left(\int_0^\infty f(rx) r^{n-1}\, dr \right)\, d\sigma^{n-1}(x) \tag{1}$$ Fix $e\in S^{n-1}$ and let $S_\theta = \{x\in S^{n-1}: e\cdot x = \cos\theta\}$ for $0\le \theta\le \pi$. The set $S_\theta$ is a $(n-2)$ dimensional sphere of radius $\sin\theta$, so $$\sigma_{\sin\theta}^{n-2}(S_\theta) = b(n) (\sin\theta)^{n-2} \tag{1.1}$$
- What does $(1.1)$ mean, and where does it come from?
where $b(n) = \sigma^{n-2}(S^{n-2})$. Then for $g\in L^1(S^{n-1})$, $$\int_{S^{n-1}} g\, d\sigma^{n-1} = \int_0^{\pi}\left( \int_{S_\theta} g(x)\, d\sigma_{\sin\theta}^{n-2}(x) \right)\, d\theta \tag{2}$$
- Where does $(2)$ come from?
Applying $(1)$ and Fubini's theorem, $$\hat f(re) = \int f(y) e^{-2\pi ir e\cdot y}\, dy =\int_0^{\infty} \psi(s) s^{n-1}\left(\int_{S^{n-1}} e^{-2\pi irse\cdot x}\, d\sigma^{n-1}(x) \right) \, ds$$
- I can see that $$\int f(y) e^{-2\pi ir e\cdot y}\, dy = \int_{S^{n-1}} \left( \int_0^{\infty} \psi(s)e^{-2\pi irse\cdot x} s^{n-1} \, ds\right) \,\, d\sigma^{n-1}(x)$$ Why is Fubini's theorem applicable? We need it to show that $$\int_{S^{n-1}} \left( \int_0^{\infty} \psi(s)e^{-2\pi irse\cdot x} s^{n-1} \, ds\right) \,\, d\sigma^{n-1}(x)=\int_0^{\infty} \psi(s) s^{n-1}\left(\int_{S^{n-1}} e^{-2\pi irse\cdot x}\, d\sigma^{n-1}(x) \right) \, ds$$
The inside integral can be computed with the help of $(2)$, since $e^{-2\pi irse\cdot x}$ is constant in $S_\theta$: $$\int_{S^{n-1}} e^{-2\pi irse\cdot x}\, d\sigma^{n-1}(x) = \int_0^\pi e^{-2\pi irs \cos\theta} \sigma^{n-2}_{\sin\theta} (S_\theta)\, d\theta = b(n)\int_0^\pi e^{-2\pi irs \cos\theta} (\sin\theta)^{n-2}\, d\theta$$
- I believe understanding the above computation is related to my first two questions in the post, which is why I'm stuck here.
Changing variable $\cos\theta\mapsto -t$ and introducing for $m > -1/2$ the Bessel functions $J_m:[0,\infty)\to \Bbb R$, we obtain $$\int_{S^{n-1}} e^{-2\pi irse\cdot x}\, d\sigma^{n-1}(x) = b(n)\int_{-1}^1 e^{2\pi irst} (1-t^2)^{(n-3)/2}\, dt = c(n)(rs)^{-(n-2)/2} J_{(n-2)/2} (2\pi rs)$$ leading to the formula for the Fourier transform of the radial function $f$: $$\hat f(x) = c(n) |x|^{-(n-2)/2} \int_0^\infty \psi(s) J_{(n-2)/2} (2\pi |x|s) s^{n/2}\, ds$$
VoilĂ ! The computation finally ends.
Reference: Fourier Analysis and Hausdorff Dimension by Pertti Mattila.