Question:
Let $a,b,c,d\ge 0$, such that $$a^2+b^2+c^2+d^2=4$$ show that $$\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{d+3}+\dfrac{d}{a+3}\le 1$$
My try: By Cauchy-Schwarz inequality,we have $$\sum_{cyc}\dfrac{a}{b+3}\le\sqrt{(\sum_{cyc}a^2)\left(\sum_{cyc}\dfrac{1}{(b+3)^2}\right)}$$ then we have only prove this $$\sum_{cyc}\dfrac{1}{(a+3)^2}\le \dfrac{1}{4}?$$ This is not true,in fact, we have $$\sum_{cyc}\dfrac{1}{(a+3)^2}\ge \dfrac{1}{4}?$$ because we have $$\dfrac{1}{(a+3)^2}\ge\dfrac{5-a^2}{64}$$ this is true because $$\Longleftrightarrow \dfrac{(a-1)^2(a^2+8a+19)}{64(a+3)^2}\ge 0$$ so $$\sum_{cyc}\dfrac{1}{(a+3)^2}\ge\sum_{cyc}\dfrac{5-a^2}{64}=\dfrac{1}{4}$$ can see:http://www.wolframalpha.com/input/?i=1%2F%28a%2B3%29%5E2-%285-a%5E2%29%2F64
This methods is from: can see:Prove this equality $\frac{x}{y^2+5}+\frac{y}{z^2+5}+\frac{z}{x^2+5}\le\frac{1}{2}$
By the way I have see this three variable inequality
let $a,b,c$ be non-negative numbers such that $$a^2+b^2+c^2=3$$ show that $$\dfrac{a}{b+2}+\dfrac{b}{c+2}+\dfrac{c}{a+2}\le 1$$
proof: By expanding,the inequality becomes $$ab^2+bc^2+ca^2\le abc+2$$ without loss of generality,assume that
$$\min(a,b,c)\le b\max(a,b,c)$$ then \begin{align*} 2-ab^2-bc^2-ca^2+abc&=2-ab^2-b(3-a^2-b^2)-ca^2+abc\\ &=(b^3-3b+2)-a(b^2-ab+ca-bc)\\ &=(b-1)^2(b+2)-a(b-a)(b-c)\ge 0 \end{align*} Equality occurs for $(a,b,c)=(1,1,1)$ and also for $(a,b,c)=(0,1,\sqrt{2})$ or any cyclic permutation.
so my Four-inequality variable inequality,can use this methods $$\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{d+3}+\dfrac{d}{a+3}\le 1$$ $$\Longleftrightarrow a^2cd+3a^2c+3a^2d+9a^2+ab^2d+3ab^2+abc^2-abcd+3ac^2+9ac+3b^2d+9b^2+3bc^2+bcd^2+3bd^2+9bd+9c^2+3cd^2+9d^2-81\le 0$$ $$\Longleftrightarrow a^2cd+3a^2c+3a^2d+ab^2d+3ab^2+abc^2+3ac^2+9ac+3b^2d+3bc^2+bcd^2+3bd^2+9bd+3cd^2\le 45$$ $$\Longleftrightarrow a^2(cd+3c+3d)+ab^2d+3ab^2+abc^2+3ac^2+9ac+3b^2d+3bc^2+bcd^2+3bd^2+9bd+3cd^2\le 45$$ $$\Longleftrightarrow (4-b^2-c^2-d^2)(cd+3c+3d)+ab^2d+3ab^2+abc^2+3ac^2+9ac+3b^2d+3bc^2+bcd^2+3bd^2+9bd+3cd^2\le 45$$
Then I can't
Thank you very much