-1

Determine the isomorphism classes of the automorphism group of the group $\mathbb{Z}_2\times\mathbb{Z}_3\times\mathbb{Z}_5$.

We know that $\gcd(2,3,5)=1$. So $\mathbb{Z}_2\times\mathbb{Z}_3\times\mathbb{Z}_5$ is isomorphic to $\mathbb{Z}_{30}$.

After that how can I proceed?

user26857
  • 52,094

2 Answers2

0

$\textrm{Aut}(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$

Mr.Fry
  • 5,003
  • 3
  • 19
  • 28
0

Well as you observed, since $2,3,$ and $5$ are pair-wise co-prime, $$\text{Aut}(\mathbb{Z}/2 \times \mathbb{Z}/3 \times \mathbb{Z}/5)\simeq \text{Aut}(\mathbb{Z}/2)\times \text{Aut}(\mathbb{Z}/3) \times \text{Aut}(\mathbb{Z}/5).$$ Can you continue from here?