How can I show that $a\sqrt 6 + b \sqrt 3 + c \sqrt 2$ is irrational given that at least one of $b, c$ is nonzero? I've seen the argument when $a = b = c = 1$, but in the general case the algebra is a lot more tedious (I need to avoid division by $0$, for example). Here's what I have so far:
Suppose that $a\sqrt6 + b\sqrt3 + c\sqrt2 \in \mathbb{Q}$. If $a = 0$, then $b\sqrt3 + c\sqrt2 \in \mathbb{Q}$ (note that $b\sqrt3 + c\sqrt2 \neq 0$, otherwise $b\sqrt3 = -c\sqrt2 \implies \sqrt6 = -2c/b$ which is a contradiction since $\sqrt6$ is irrational) so that
\begin{align*} b\sqrt3 - c\sqrt2 = \frac{3b - 2c}{b\sqrt3 + c\sqrt2} \in \mathbb{Q} \end{align*}
Hence,
\begin{align*} (b\sqrt3 + c\sqrt2) + (b\sqrt3 - c\sqrt2) = 2b\sqrt3 \in \mathbb{Q} \end{align*}
which is a contradiction if $b \neq 0$. (Note that if $b = 0$, then by assumption $c \neq 0$ and we can use a similar argument to arrive at a contradiction)
Therefore, assume that $a \neq 0$. Then, it follows that
\begin{equation*} r = (a\sqrt3 + c)\left(\sqrt2 + \frac{b}{a}\right) = (a\sqrt6 + b \sqrt3 + c\sqrt2) + \frac{cb}{a} \in \mathbb{Q} \end{equation*}
since the sum of two rationals is rational. Then,
\begin{align*} a\sqrt3 + c &= \frac{r}{\sqrt2 + \frac{b}{a}} \\&= \frac{r}{\sqrt2 + \frac{b}{a}} \cdot \frac{\sqrt2 - \frac{b}{a}}{\sqrt2 - \frac{b}{a}} \\&= \frac{r}{2 - \frac{b^2}{a^2}}\cdot\left(\sqrt2 - \frac{b}{a}\right) \end{align*}
and so
\begin{align*} a\sqrt3 - \frac{r\sqrt2}{2 - \frac{b^2}{a^2}}&= \frac{-rb}{a\left(2 - \frac{b^2}{a^2}\right)}-c \in \mathbb{Q} \end{align*}
Note that $a\sqrt3 - \frac{r\sqrt2}{2 - \frac{b^2}{a^2}} \neq 0$, otherwise $a\sqrt6 = \frac{2r}{2 - \frac{b^2}{a^2}} \in \mathbb{Q}$. On the other hand,
\begin{align*} a\sqrt3 + \frac{r\sqrt2}{2 - \frac{b^2}{a^2}}&= \frac{3a^2 - \frac{2r^2}{\left(2 - \frac{b^2}{a^2}\right)^2}}{a\sqrt3 - \frac{r\sqrt2}{2 - \frac{b^2}{a^2}}}\\&= \frac{3a^2 - \frac{2r^2}{\left(2 - \frac{b^2}{a^2}\right)^2}}{\frac{-rb}{2a - \frac{b^2}{a}}-c}\in \mathbb{Q} \end{align*}
However, if $a\sqrt3 + \frac{r\sqrt2}{2 - \frac{b^2}{a^2}} \in \mathbb{Q}$ and $a\sqrt3 - \frac{r\sqrt2}{2 - \frac{b^2}{a^2}} \in \mathbb{Q}$, then \begin{align*} \left(a\sqrt3 + \frac{r\sqrt2}{2 - \frac{b^2}{a^2}}\right) + \left(a\sqrt3 - \frac{r\sqrt2}{2 - \frac{b^2}{a^2}}\right) = 2a\sqrt{3} \in \mathbb{Q} \end{align*}
This is a contradiction, since we assumed $a \neq 0$.
As you see the argument is very tedious (and perhaps there are even holes / mistakes, in which case please let me know). Is there a better (cleaner) way to prove the statement