I will first prove that if $f(x)$ is a continuous and $\pi$-periodic function on $\mathbb{R}$, then $$\int_{-\infty}^{\infty} f(x) \, \frac{\sin^{2}(x)}{x^{2}} \, dx = \int_{0}^{\pi} f(x) \, dx$$ provided that both integrals converge.
We will need that fact that $$\sum_{n=-\infty}^{\infty} \frac{1}{(z+n \pi)^{2}} = \csc^{2}(z).$$
(See THIS QUESTION for a derivation.)
$$\begin{align} \int_{-\infty}^{\infty} f(x) \, \frac{\sin^{2}(x)}{x^{2}} \, dx &= \sum_{n=-\infty}^{\infty} \int_{n \pi}^{(n+1) \pi} f(x) \frac{\sin^{2}(x)}{x} \, dx \\ &= \sum_{n = -\infty}^{\infty} \int_{0}^{\pi} f(u+ n \pi) \, \frac{\sin^{2}(u + n \pi)}{(u + n \pi)^{2}} \, du \\ &= \sum_{n=-\infty}^{\infty} \int_{0}^{\pi} f(u) \, \frac{\sin^{2}(u)}{(u + n \pi)^{2}} \, du \\ &= \int_{0}^{\pi} f(u) \sin^{2}(u) \sum_{n=\infty}^{\infty} \frac{1}{(u+n \pi)^{2}} \, du \\ &= \int_{0}^{\pi} f(u) \, du \end{align}$$
Jack D'Aurizio already showed that the integral is equivalent to $$I(n) = 2^{2n} \int_{-\infty}^{\infty} \frac{\sin^{2n+2}(x)}{x^{2}} \, dx. $$
So using the above formula, we get $$\begin{align} I(n) &= 2^{2n} \int_{0}^{\infty} \sin^{2n}(x) \frac{\sin^{2}(x)}{x^{2}} \, dx = 2^{2n}\int_{0}^{\pi} \sin^{2n}(x) \, dx \\ &= 2^{2n+1} \int_{0}^{\pi/2} \sin^{2n}(x) \, dx = 2^{2n+1} \frac{1}{2^{2n}} \binom{2n}{n} \frac{\pi}{2} \tag{1}\\&= \binom{2n}{n} \pi . \end{align}$$
$(1)$ Wallis's integral