Let $(a_n)_{n\in \mathbb{N}}$ be a sequence with $a_1=1$ and $a_{n+1}=\dfrac{4a_n}{3a_n+3}$.
To show: $a_n\geq 1/3$
Proof by induction:
Base case: n=1 implies $1 \geq 1/3$
induction hypothesis: $a_n \geq 1/3 \forall n \in \mathbb{N}$
induction step: $n \mapsto n+1$
$a_{n+1} = \frac{4a_n}{3a_n+3}$
Now I cannot go on, how can I show by that $a_{n+1} \geq a_n \geq 1/3$? Thx