Here is an alternative solution in the case you do not know the cotangent series given in the amazing solution by user10354138. Let $$f(z):=1-z^6+z^8-z^{14}+z^{16}-z^{22}+\ldots\text{ for }z\in\mathbb{C}\text{ such that }|z|<1\,.$$
Then, $(1-z^8)\,f(z)=1-z^6$, so
$$f(z)=\frac{1+z^2+z^4}{(1+z^2)(1+z^4)}=\frac{1}{2\,(1+z^2)}+\frac{1}{4\,\Biggl(\frac{1}{2}+\left(z+\frac{1}{\sqrt{2}}\right)^2\Biggr)}+\frac{1}{4\,\Biggl(\frac{1}{2}+\left(z-\frac{1}{\sqrt{2}}\right)^2\Biggr)}$$
for all $z\in\mathbb{C}$ with $|z|<1$. That is,
$$\int\,f(x)\,\text{d}x=\frac{1}{2}\,\arctan(x)+\frac{\arctan(\sqrt{2}\,x+1)+\arctan(\sqrt{2}\,x-1)}{2\sqrt{2}}+\text{constant}\,.$$
That is,
$$\int_0^1\,f(x)\,\text{d}x=\frac{1}{2}\,\left(\frac{\pi}{4}\right)+\frac{\left(\frac{3\pi}{8}-\frac{\pi}{4}\right)+\left(\frac{\pi}{8}+\frac{\pi}{4}\right)}{2\sqrt{2}}=\frac{\pi}{8}\,\big(1+\sqrt{2}\big)\,.$$
However, since the series representation of $f(z)$ compactly converges for $z\in\mathbb{C}$ such that $|z|<1$, we can then integrate $f(z)=1-z^6+z^8-z^{14}+\ldots$ term-by-term to get
$$\int_0^1\,f(x)\,\text{d}x=1-\frac{1}{7}+\frac{1}{8}-\frac{1}{15}+\frac{1}{17}-\frac{1}{23}+\ldots\,.$$
This shows that
$$1-\frac{1}{7}+\frac{1}{8}-\frac{1}{15}+\frac{1}{17}-\frac{1}{23}+\ldots=\frac{\pi}{8}\,\big(1+\sqrt{2}\big)\approx 0.948059449\,.$$