$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{{1 \over 1} + {1 \over 3} - {1 \over 5}
- {1 \over 7} + {1 \over 9} + {1 \over 11} - \cdots} \equiv
\sum_{n = 0}^{\infty}\pars{-1}^{n}
\sum_{k = 2n + 1}^{2n + 2}{1 \over 2k - 1}
\\[5mm] = &
\sum_{n = 0}^{\infty}\pars{-1}^{n}
\sum_{k = 0}^{1}{1 \over 2k + 4n + 1} =
\sum_{k = 0}^{1}\sum_{n = 0}^{\infty}
{\pars{-1}^{n} \over 4n + 2k + 1}
\\[5mm] = &\
\sum_{k = 0}^{1}\sum_{n = 0}^{\infty}\pars{-1}^{n}
\int_{0}^{1}t^{4n + 2k}\,\dd t =
\sum_{k = 0}^{1}\int_{0}^{1}t^{2k}
\sum_{n = 0}^{\infty}\pars{-t^{4}}^{n}\,\dd t
\\[5mm] = &
\sum_{k = 0}^{1}\int_{0}^{1}{t^{2k} \over 1 + t^{4}}\,\dd t =
\sum_{k = 0}^{1}\int_{0}^{1}{t^{2k} - t^{2k + 4} \over
1 - t^{8}}\,\dd t
\\[5mm] = &\
{1 \over 8}\sum_{k = 0}^{1}\int_{0}^{1}
{t^{k/4 - 7/8} - t^{k/4 - 3/8} \over 1 - t}\,\dd t
\\[5mm] = &\
{1 \over 8}\sum_{k = 0}^{1}\bracks{%
\Psi\pars{{k \over 4} + {5 \over 8}} -
\Psi\pars{{k \over 4} + {1 \over 8}}}
\end{align}
where $\ds{\Psi}$ is the Digamma Function.
Then,
\begin{align}
&\bbox[10px,#ffd]{{1 \over 1} + {1 \over 3} - {1 \over 5}
- {1 \over 7} + {1 \over 9} + {1 \over 11} - \cdots}
\\[5mm] = &\
{\bracks{\Psi\pars{5/8} - \Psi\pars{1/8}} +
\bracks{\Psi\pars{7/8} - \Psi\pars{3/8}} \over 8}
\\[5mm] = &\
{\bracks{\Psi\pars{5/8} - \Psi\pars{3/8}} +
\bracks{\Psi\pars{7/8} - \Psi\pars{1/8}} \over 8}
\end{align}
With
Euler Reflection Formula:
\begin{align}
&\bbox[10px,#ffd]{{1 \over 1} + {1 \over 3} - {1 \over 5}
- {1 \over 7} + {1 \over 9} + {1 \over 11} - \cdots} =
{\pi\cot\pars{3\pi/8} + \pi\cot\pars{\pi/8} \over 8}
\\[5mm] = &\
\pi\,{\tan\pars{\pi/8} + \cot\pars{\pi/8} \over 8} =
{\pi \over 8\sin\pars{\pi/8}\cos\pars{\pi/8}} =
{\pi \over 4\sin\pars{\pi/4}}
\\[5mm] = &\
{\pi \over 4\pars{\root{2}/2}} =
\bbx{{\root{2} \over 4}\,\pi} \approx 1.1107
\end{align}