Show that for natural $n \ge 2$ the following does hold:
$$\left(1-\frac{1}{n^{2}}\right)^{n}>1-\frac{1}{n}$$
First solution: $$\left(1-\frac{1}{n^{2}}\right)^{n}>1-\frac{1}{n}$$ $$\iff$$ $$\left(1-\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)^{n}>1-\frac{1}{n}$$ $$\left(1-\frac{1}{n}\right)^{n-1}\left(1+\frac{1}{n}\right)^{n}>1$$
By Bernoulli inequality: $$\left(1-\frac{1}{n}\right)^{n-1}\left(1+\frac{1}{n}\right)^{n}\ge2\left(1-\frac{n-1}{n}\right)=\frac{2}{n}$$
Which is not useful.
Second solution:
$$\left(1-\frac{1}{n^{2}}\right)^{n}=\left(1-\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)^{n}\ge0\cdot2=0$$
Which is not useful.
Third solution:
$$\left(1-\frac{1}{n^{2}}\right)^{n}=\left(1-\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)^{n}\ge2\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{n-1}=\left(1+\left(-\frac{1}{2}\right)\right)^{n-1}$$$$\ge1-\frac{n-1}{2}=\frac{3-n}{2}$$
Final solution:
$$\left(1-\frac{1}{n^{2}}\right)^{n}>1-\frac{1}{n}$$ $$\iff$$ $$\left(1-\frac{1}{n^{2}}\right)^{n-1}\left(1+\frac{1}{n}\right)>1$$ By Bernoulli inequality: $$\left(1-\frac{1}{n^{2}}\right)^{n-1}\left(1+\frac{1}{n}\right)>1-\frac{n-1}{n^{2}}=1-\frac{1}{n}+\frac{1}{n^{2}}\ge\frac{1}{2}+\frac{1}{n^{2}}$$
Which is true to claim that $$\frac{1}{2}+\frac{1}{n^{2}}>1-\frac{1}{n}$$ Since for natural $n \ge 2$ we have that $$\frac{1}{n}\left(\frac{1}{n}+1\right)>\frac{1}{2}$$