A different method:
Using the known integral
$$ I(p) = \int_{0}^{\infty} \frac{t^p \, dt}{1 + t^2} = \frac{\pi}{2} \, \sec\left(\frac{\pi \, p}{2}\right) $$
then
\begin{align*}
I(i) &= \int_{0}^{\infty} \frac{t^i \, dt}{1 + t^2} = \frac{\pi}{2} \,\operatorname{sech}\left(\frac{\pi}{2}\right) \\
I(-i) &= \int_{0}^{\infty} \frac{t^{-i} \, dt}{1 + t^2} = \frac{\pi}{2} \, \operatorname{sech}\left(\frac{\pi}{2}\right)
\end{align*}
and
\begin{align*}
\int_{0}^{\infty} \frac{t^i + t^{-i}}{1 + t^2} \, dt &= \pi \, \operatorname{sech}\left(\frac{\pi}{2}\right) \\
\int_{0}^{\infty} \frac{t^i - t^{-i}}{1 + t^2} \, dt &= 0.
\end{align*}
Since $t^i = e^{i \, \ln(t)}$ then the last two integrals become
\begin{align*}
\int_{0}^{\infty} \frac{\cos(\ln t)}{1 + t^2} \, dt &= \frac{\pi}{2} \, \operatorname{sech}\left(\frac{\pi}{2}\right) \\
\int_{0}^{\infty} \frac{\sin(\ln t)}{1 + t^2} \, dt &= 0.
\end{align*}
Letting $ t = \tan(x) $ gives the integral results
\begin{align*}
\int_{0}^{\pi/2} \cos(\ln \tan x) \, dx &= \frac{\pi}{2} \, \operatorname{sech}\left(\frac{\pi}{2}\right) \\
\int_{0}^{\pi/2} \sin(\ln \tan x) \, dx &= 0.
\end{align*}
Note that since
$$ \int_{0}^{\pi/4} \cos(\ln(\tan x)) \, dx = \frac{1}{2} \, \int_{0}^{\pi/2} \cos(\ln(\tan x)) \, dx $$
then
$$ \int_{0}^{\pi/4} \cos(\ln \tan x) \, dx = \frac{\pi}{4} \, \operatorname{sech}\left(\frac{\pi}{2}\right). $$
Note 2:
Using the known integral
$$ \int_{0}^{1} \frac{t^p \, dt}{1 + t^2} = \frac{1}{4} \, \left(\psi\left(\frac{p+3}{4}\right) - \psi\left(\frac{p+1}{4}\right) \right). $$
then following the same pattern
$$ \int_{0}^{\pi/4} \sin(\ln \tan x) \, dx = \frac{i}{8} \, \left(\psi\left(\frac{3-i}{4}\right) - \psi\left(\frac{3+i}{4}\right) + \psi\left(\frac{1+i}{4}\right) - \psi\left(\frac{1-i}{4}\right) \right). $$