Here I want to simulate a physical model that I have used a set of differential equations.
My coefficients and parameters:
gamma=2*Pi*6.02*10^6; alpha= 20; L=4000; u=299792458;
detunp=0*gamma;detunc=0*gamma;detund=0*gamma;
gamma21=0*gamma;gamma31=1.25*gamma;gamma41=1.25*gamma;
ch=150*Sqrt[2];cv=150*Sqrt[2];dh=1500*Sqrt[2];dv=1500*Sqrt[2];
Mu=70;Theta=2.45*Pi/180;
A=Exp[-2*(x^2+y^2)/100^2];
OmegaC=(0.3*gamma)*Exp[-2*(x^2/cv^2+(Mu+y Cos[Theta]+(z-L/2)Sin[Theta])^2/(ch^2(1-x^2/cv^2)))];
OmegaD=(0.3*gamma)*Exp[-2*(x^2/cv^2+(Mu+y Cos[Theta]+(z-L/2)Sin[Theta])^2/(ch^2(1-x^2/cv^2)))];
My partial differential equations and boundary conditions and solving:
pde={D[a[z,t],t]*(10^6)==0.5*I*S[z,t]+0.5*I*OmegaD*c[z,t]+(I*detund-
0.5*gamma41)*a[z, t],D[b[z,t],t]*(10^6)==0.5*I*P[z,t]+0.5*I*OmegaC*c[z,t]+(I*detunp-0.5*gamma31)*b[z, t],
D[c[z,t],t]*(10^6)==0.5*I*b[z,t]*OmegaC+0.5*I*a[z,t]*OmegaD+(I*detunc-0.5*gamma21)*c[z, t],
D[P[z,t],z]+1/u*D[P[z,t],t]==I*alpha*gamma31/(2L)*b[z,t],
D[S[z,t],z]+1/u*D[S[z,t],t]==I*alpha*gamma41/(2L)*a[z,t]};
bc={P[0,t]==A*Boole[10<=t<=30],P[z,0]==0,S[0,t]==S[z,0]==0,b[z,0]==a[z,0]==c[z,0]==0};
solns=ParametricNDSolve[{pde, bc}, {P, S, a, b, c}, {z, 0, 4000}, {t, 0, 60}, {x, y}];
As you can see, I have used a Boole function in bc to simulate the pulse shape of laser light.
But after solving the solns, I will get a distort pulse-shape like this.
Plot[{Evaluate[Sum[Abs[P[x,y][0,t]/.solns]^2,{x,0,0,3},{y,0,0,3}]]},
{t,0,60},PlotRange->All]
Is that unavoidable?
Or is there any solutions can help me, thanks :)



OmegaDetc.? – xzczd Oct 21 '16 at 04:12