Here is the solution to get the right geometry :
Mesh from DensityPlot
sol = NDSolveValue[
{ \[Rho]^2 D[ u[\[Rho], \[Phi]], \[Rho], \[Rho]] + \[Rho] D[ u[\[Rho], \[Phi]], \[Rho]] + D[u[\[Rho], \[Phi]], \[Phi], \[Phi]] == 0
, DirichletCondition[u[\[Rho], \[Phi]] == 1000., \[Rho] == .5 && 0 <= \[Phi] <= 2 \[Pi]]
, DirichletCondition[ u[\[Rho], \[Phi]] == 0., \[Rho] == 10 && 0 <= \[Phi] <= 2 \[Pi]]
}
, u, {\[Rho], 0.5, 10}, {\[Phi], 0, 2\[Pi]}
];
gr00=DensityPlot[sol[\[Rho], \[Phi]], {\[Rho], 0.5, 10}, {\[Phi], 0, 2\[Pi] }
, Mesh -> All
, ColorFunction -> "Rainbow"
, PlotLegends -> Automatic
];
Show[gr00 /. GraphicsComplex[array1_, rest___] :>
GraphicsComplex[(#[[1]] {Cos[#[[2]]],Sin[#[[2]]]})& /@ array1, rest],
PlotRange -> 10 {{-1,1},{-1,1}}
]

Mesh from NDSolveValue
EDIT
THERE WAS A ERROR IN MY ANSWER JUST AFTER THIS EDIT
The real mesh used by NDSolve[...] is given by :
Show[sol["ElementMesh"]["Wireframe"] /. GraphicsComplex[array1_, rest___] :>
GraphicsComplex[(#[[1]] {Cos[#[[2]]],Sin[#[[2]]]})& /@ array1, rest],
PlotRange -> 10 {{-1,1},{-1,1}}
]
END EDIT
sol = NDSolveValue[
{ \[Rho]^2 D[ u[\[Rho], \[Phi]], \[Rho], \[Rho]] + \[Rho] D[ u[\[Rho], \[Phi]], \[Rho]] + D[u[\[Rho], \[Phi]], \[Phi], \[Phi]] == 0
, DirichletCondition[u[\[Rho], \[Phi]] == 1000., \[Rho] == .5 && 0 <= \[Phi] <= 2 \[Pi]]
, DirichletCondition[ u[\[Rho], \[Phi]] == 0., \[Rho] == 10 && 0 <= \[Phi] <= 2 \[Pi]]
}
, u, {\[Rho], 0.5, 10}, {\[Phi], 0, 2\[Pi]}
];
gr01=DensityPlot[sol[\[Rho], \[Phi]], {\[Rho],\[Phi]} \[Element] sol["ElementMesh"]
, Mesh -> All
, ColorFunction -> "Rainbow"
, PlotLegends -> Automatic
];
Show[gr01 /. GraphicsComplex[array1_, rest___] :>
GraphicsComplex[(#[[1]] {Cos[#[[2]]],Sin[#[[2]]]})& /@ array1, rest],
PlotRange -> 10 {{-1,1},{-1,1}}
]

WARNING
The question is restricted to the particular case where the solution doesn't depend of Phi. All derivative related to phi are 0.
Let see what's happening if the diffusion of heat is not radial, for example suppose that the heating is only done in the upper-right part of the inner boundary. Here is the code :
sol = NDSolveValue[
{ \[Rho]^2 D[ u[\[Rho], \[Phi]], \[Rho], \[Rho]] + \[Rho] D[ u[\[Rho], \[Phi]], \[Rho]] + D[u[\[Rho], \[Phi]], \[Phi], \[Phi]] == 0
, DirichletCondition[u[\[Rho], \[Phi]] == If[0 <\[Phi]< Pi/2,1000.,200.], \[Rho] == 2 && 0 <= \[Phi] <= 2 \[Pi]]
, DirichletCondition[ u[\[Rho], \[Phi]] == 0, \[Rho] == 10 && 0 <= \[Phi] <= 2 \[Pi]]
}
, u, {\[Rho], 2, 10}, {\[Phi], 0, 2\[Pi]}
];
gr02=DensityPlot[sol[\[Rho], \[Phi]], {\[Rho], 2, 10}, {\[Phi], 0, 2\[Pi] }
, Mesh -> All
, ColorFunction -> "Rainbow"
, PlotLegends -> Automatic
,PlotRange -> All
];
Show[gr02 /. GraphicsComplex[array1_, rest___] :>
GraphicsComplex[(#[[1]] {Cos[#[[2]]],Sin[#[[2]]]})& /@ array1, rest],
PlotRange -> 10 {{-1,1},{-1,1}}
]

The heat doesn't diffuse through the line phi=0. This is because the domain has 4 boundaries : R=0.5 , R=10 , but also phi=0 , phi=2 Pi. The boundary conditions are not specified on the boundaries phi=0 , phi=2 Pi. In this case, NDSolve takes the default boudary condition which is Neumann=0 (ie Heat flux=0).The problem can be solved on the most recent versions of mathematica, where periodic Neumann conditions are introduced. (stroken because probably false, not sure)
Edit
Finally, the problem of the undesirable boundary at phi=0 is solved here