We need quite a bit of preparation. In the first place we need methods to compute cell adjacency matrices from here. I copied the code for completeness.
CellAdjacencyMatrix[R_MeshRegion, d_, 0] := If[MeshCellCount[R, d] > 0,
Unitize[R["ConnectivityMatrix"[d, 0]]],
{}
];
CellAdjacencyMatrix[R_MeshRegion, 0, d_] := If[MeshCellCount[R, d] > 0,
Unitize[R["ConnectivityMatrix"[0, d]]],
{}
];
CellAdjacencyMatrix[R_MeshRegion, 0, 0] :=
If[MeshCellCount[R, 1] > 0,
With[{A = CellAdjacencyMatrix[R, 0, 1]},
With[{B = A.Transpose[A]},
SparseArray[B - DiagonalMatrix[Diagonal[B]]]
]
],
{}
];
CellAdjacencyMatrix[R_MeshRegion, d1_, d2_] :=
If[(MeshCellCount[R, d1] > 0) && (MeshCellCount[R, d2] > 0),
With[{B = CellAdjacencyMatrix[R, d1, 0].CellAdjacencyMatrix[R, 0, d2]},
SparseArray[
If[d1 == d2,
UnitStep[B - DiagonalMatrix[Diagonal[B]] - d1],
UnitStep[B - (Min[d1, d2] + 1)]
]
]
],
{}
];
Alternatively to copying the code above, simply make sure that you have IGraph/M version 0.3.93 or later installed and run
Needs["IGraphM`"];
CellAdjacencyMatrix = IGMeshCellAdjacencyMatrix;
Next is a CompiledFunction to compute the triangle faces for the new mesh:
getSubdividedTriangles =
Compile[{{ff, _Integer, 1}, {ee, _Integer, 1}},
{
{Compile`GetElement[ff, 1],Compile`GetElement[ee, 3],Compile`GetElement[ee, 2]},
{Compile`GetElement[ff, 2],Compile`GetElement[ee, 1],Compile`GetElement[ee, 3]},
{Compile`GetElement[ff, 3],Compile`GetElement[ee, 2],Compile`GetElement[ee, 1]},
ee
},
CompilationTarget -> "C",
RuntimeAttributes -> {Listable},
Parallelization -> True,
RuntimeOptions -> "Speed"
];
Finally, the method that webs everything together. It assembles the subdivision matrix (which maps the old vertex coordinates to the new ones), uses it to compute the new positions and calls getSubdividedTriangles in order to generate the new triangle faces.
ClearAll[LoopSubdivide];
Options[LoopSubdivide] = {
"VertexWeightFunction" ->
Function[n, 5./8. - (3./8. + 1./4. Cos[(2. Pi)/n])^2],
"EdgeWeight" -> 3./8.,
"AverageBoundary" -> True
};
LoopSubdivide[R_MeshRegion, opts : OptionsPattern[]] :=
LoopSubdivide[{R, {{0}}}, opts][[1]];
LoopSubdivide[{R_MeshRegion, A_?MatrixQ}, OptionsPattern[]] :=
Module[{A00, A10, A12, A20, B00, B10, n, n0, n1, n2, βn, pts,
newpts, edges, faces, edgelookuptable, triangleneighedges,
newfaces, subdivisionmatrix, bndedgelist, bndedges, bndvertices,
bndedgeQ, intedgeQ, bndvertexQ,
intvertexQ, β, βbnd, η},
pts = MeshCoordinates[R];
A10 = CellAdjacencyMatrix[R, 1, 0];
A20 = CellAdjacencyMatrix[R, 2, 0];
A12 = CellAdjacencyMatrix[R, 1, 2];
edges = MeshCells[R, 1, "Multicells" -> True][[1, 1]];
faces = MeshCells[R, 2, "Multicells" -> True][[1, 1]];
n0 = Length[pts];
n1 = Length[edges];
n2 = Length[faces];
edgelookuptable = SparseArray[
Rule[
Join[edges, Transpose[Transpose[edges][[{2, 1}]]]],
Join[Range[1, Length[edges]], Range[1, Length[edges]]]
],
{n0, n0}];
(*A00=CellAdjacencyMatrix[R,0,0];*)
A00 = Unitize[edgelookuptable];
bndedgelist = Flatten[Position[Total[A12, {2}], 1]];
If[Length[bndedgelist] > 0, bndedges = edges[[bndedgelist]];
bndvertices = Sort[DeleteDuplicates[Flatten[bndedges]]];
bndedgeQ = SparseArray[Partition[bndedgelist, 1] -> 1, {n1}];
bndvertexQ = SparseArray[Partition[bndvertices, 1] -> 1, {n0}];
B00 = SparseArray[Join[bndedges, Reverse /@ bndedges] -> 1, {n0, n0}];
B10 = SparseArray[Transpose[{Join[bndedgelist, bndedgelist], Join @@ Transpose[bndedges]}] -> 1, {n1, n0}];,
bndedgeQ = SparseArray[{}, {Length[edges]}];
bndvertexQ = SparseArray[{}, {n0}];
B00 = SparseArray[{}, {n0, n0}];
B10 = SparseArray[{}, {n1, n0}];
];
intedgeQ = SparseArray[Subtract[1, Normal[bndedgeQ]]];
intvertexQ = SparseArray[Subtract[1, Normal[bndvertexQ]]];
n = Total[A10];
β = OptionValue["VertexWeightFunction"];
η = OptionValue["EdgeWeight"];
βn = β /@ n;
βbnd = If[TrueQ[OptionValue["AverageBoundary"]], 1./8., 0.];
subdivisionmatrix = Join[
Plus[
DiagonalMatrix[SparseArray[1. - βn] intvertexQ + (1. - 2. βbnd) bndvertexQ],
SparseArray[(βn/n intvertexQ)] A00,
βbnd B00
],
Plus @@ {
((3. η - 1.) intedgeQ) (A10),
If[Abs[η - 0.5] < Sqrt[$MachineEpsilon], Nothing, ((0.5 - η) intedgeQ) (A12.A20)], 0.5 B10}
];
newpts = subdivisionmatrix.pts;
triangleneighedges = Module[{f1, f2, f3},
{f1, f2, f3} = Transpose[faces];
Partition[
Extract[
edgelookuptable,
Transpose[{Flatten[Transpose[{f2, f3, f1}]], Flatten[Transpose[{f3, f1, f2}]]}]],
3]
];
newfaces =
Flatten[getSubdividedTriangles[faces, triangleneighedges + n0],
1];
{
MeshRegion[newpts, Polygon[newfaces]],
subdivisionmatrix
}
]
Test examples
So, let's test it. A classical example is subdividing an "Isosahedron":
R = RegionBoundary@PolyhedronData["Icosahedron", "MeshRegion"];
regions = NestList[LoopSubdivide, R, 5]; // AbsoluteTiming // First
g = GraphicsGrid[Partition[regions, 3], ImageSize -> Full]
0.069731

Now, let's tackle the "Triceratops" from above:
R = ExampleData[{"Geometry3D", "Triceratops"}, "MeshRegion"];
regions = NestList[LoopSubdivide, R, 2]; // AbsoluteTiming // First
g = GraphicsGrid[Partition[regions, 3], ImageSize -> Full]
0.270776

The meshes so far had trivial boundary. As for an example with nontrivial boundary, I dug out the "Vase" from the example dataset:
R = ExampleData[{"Geometry3D", "Vase"}, "MeshRegion"];
regions = NestList[LoopSubdivide, R, 2]; // AbsoluteTiming // First
g = GraphicsRow[
Table[Show[S, ViewPoint -> {1.4, -2.1, -2.2},
ViewVertical -> {1.7, -0.6, 0.0}], {S, regions}],
ImageSize -> Full]
1.35325

Edit
Added some performance improvements and incorporated some ideas by Chip Hurst form this post.
Added options for customization of the subdivision process, in particular for planar subdivision (see this post for an application example).
Added a way to return also the subdivision matrix since it can be useful, e.g. for geometric multigrid solvers. Just call with a matrix as second argument, e.g., LoopSubdivide[R,{{1}}].
Fixed a bug that produced dense subdivision matrices in some two-dimensional examples due to not using 0 as "Background" value.
MeshRegion @@ PolyhedronData["Icosahedron", "Faces"]returns an error, probably you meantPolyhedronData["Icosahedron", "MeshRegion"]. But with this the result is far from what you showed (version 11.2.0). – Alexey Popkov Dec 04 '17 at 20:00"Faces"(which I found surprising by myself).PolyhedronData["Icosahedron", "MeshRegion"]is pretty broken for me, too. There are probably some nonmanifold edges hanging around. Does the fixR = MeshRegion @@ Cases[PolyhedronData["Icosahedron", "Graphics3D"] , _GraphicsComplex][[1]]work for you> – Henrik Schumacher Dec 04 '17 at 20:15Volumereturns0in the all cases? – Alexey Popkov Dec 04 '17 at 20:19PolyhedronData["Icosahedron", "MeshRegion"]is volumetric... – Henrik Schumacher Dec 04 '17 at 20:22(A12.A20).ptscould readA12.(A20.pts)and evenA12might be decomposed intoA10andA21plus some minor tweaking) but the subdivision matrices may be interesting on their own, e.g. for constructing multigrid methods for solving linear equations. However, I have not found the time, yet, to experiment with that. =/ – Henrik Schumacher Mar 14 '18 at 11:13MeshCellsno longer takes the argument"Multicells"(it turns up in red in mathematica). Could you please correct this in your code? – ap21 Jan 25 '21 at 06:42"Multicell"has always been rendered in red, because the code highlighter did not know about it. It should work anyways... – Henrik Schumacher Jan 25 '21 at 08:12