3D ellipsoid surface:
L[x_, y_, z_] = 200.4 + 2.3*10^10 x^2 + 8*10^7 y^2 + y*(2.8*10^-9 - 1.17*10^6*z) -
29150.6*z + 1.9*10^6*z^2 + x*(-4.3*10^6 - 9.73*10^7*y + 3.13*10^8*z) == 1;
project onto the $yz$ plane:
fx[y_, z_] = Resolve[Exists[x, L[x, y, z]], Reals]
(* -1.97537*10^-8 - 0.000113839 y + 1. y^2 + 1.35294*10^-6 z - 0.00635739 y z + 0.0104524 z^2 <= 0 *)
project onto the $xz$ plane:
fy[x_, z_] = Resolve[Exists[y, L[x, y, z]], Reals]
(* 8.68073*10^-9 - 0.000187197 x + 1. x^2 - 1.26905*10^-6 z + 0.0135952 x z + 0.0000825289 z^2 <= 0 *)
project onto the $xy$ plane:
fz[x_, y_] = Resolve[Exists[z, L[x, y, z]], Reals]
(* 8.66424*10^-9 - 0.000187837 x + 1. x^2 - 8.87824*10^-7 y - 0.00009189 x y + 0.00789566 y^2 <= 0 *)
plots:
{RegionPlot[fx[y, z], {y, -0.00011, 0.00022}, {z, -0.0015, 0.0015}],
RegionPlot[fy[x, z], {x, 0.00008, 0.00011}, {z, -0.0015, 0.0015}],
RegionPlot[fz[x, y], {x, 0.00008, 0.00011}, {y, -0.00011, 0.00022}]} // GraphicsRow
