0

I have the given function $Func$ and want to have a plot of those domains where $-3\leq Func\leq 3$ in precise details. I am using Plot[ConditionalExpression[1, -3 <= Func <= 3] for and I obtain this plot

enter image description here

Questions.

  1. As can be seen, by increasing PlotPoints, MaxRecursion, and WorkingPrecision, the accuracy of the plots changes; however, when I set the mentioned items a big number, it takes a lot of time. My question is: is there any alternative rather than a conditional plot that gives a more precise result in a shorter time?
p1 = Plot[ConditionalExpression[1, -3 <= Func <= 3], {x, 11, 16}, PlotPoints -> 30, MaxRecursion -> 2, PlotStyle -> Directive[Red, CapForm["Butt"], Opacity[1], Thickness[.005]], Axes -> {False, False}, WorkingPrecision -> 20] ;
p2 = Plot[ConditionalExpression[2, -3 <= Func <= 3], {x, 11, 16}, PlotPoints -> 50, MaxRecursion -> 4, PlotStyle -> Directive[Blue, CapForm["Butt"], Opacity[1], Thickness[.005]], Axes -> {False, False}, WorkingPrecision -> 100] ;
p3 = Plot[ConditionalExpression[3, -3 <= Func <= 3], {x, 11, 16}, PlotPoints -> 80, MaxRecursion -> 6, PlotStyle -> Directive[Green, CapForm["Butt"], Opacity[1], Thickness[.005]], Axes -> {False, False}, WorkingPrecision -> 200] ;

Pic = Show[{p1, p2, p3}, PlotRange -> {{11, 16}, {0, 4}} , AspectRatio -> 1/6]

the function

Func:=(1/(1024*(-1 + x)^11*(1 + x)^11))*Csc[x]^11*(-264*x*(-1 + x^2)^2*(777 + 11928*x^2 + 73148*x^4 + 275752*x^6 + 653046*x^8 + 275752*x^10 + 73148*x^12 + 11928*x^14 + 777*x^16)*Cos[Pi/22] - 88*x*(-1 + x^2)^4*(69 + 2258*x^2 - 7733*x^4 - 132548*x^6 - 7733*x^8 + 2258*x^10 + 69*x^12)*Cos[(3*Pi)/22] + 88*x*(-1 + x^2)^6*(183 + 2532*x^2 - 7990*x^4 + 2532*x^6 + 183*x^8)*Cos[(5*Pi)/22] - 2816*(-1 + x^2)^2*(1 + x^2)^9*Cos[(5/22)*(Pi - 88*x)] + 
   22*(13031 + 2359*x + 94165*x^2 + 27282*x^3 + 247529*x^4 + 152299*x^5 + 424547*x^6 + 605784*x^7 + 1019270*x^8 + 1805534*x^9 + 2133618*x^10 + 2677804*x^11 + 2133618*x^12 + 1805534*x^13 + 1019270*x^14 + 605784*x^15 + 424547*x^16 + 152299*x^17 + 247529*x^18 + 27282*x^19 + 94165*x^20 + 2359*x^21 + 13031*x^22)*Cos[(5/22)*(Pi - 44*x)] - 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Cos[Pi/22 - 18*x] + 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Cos[(3*Pi)/22 - 18*x] + 176*(-1 + x^2)^2*(1 + x^2)^5*(247 + 612*x^2 + 330*x^4 + 612*x^6 + 247*x^8)*Cos[Pi/22 - 16*x] + 
   176*(-1 + x^2)^2*(1 + x^2)^5*(247 + 612*x^2 + 330*x^4 + 612*x^6 + 247*x^8)*Cos[(5*Pi)/22 - 16*x] - 264*(-1 + x^2)^2*(1 + x^2)^3*(69 + 1298*x^2 + 3019*x^4 + 3516*x^6 + 3019*x^8 + 1298*x^10 + 69*x^12)*Cos[Pi/22 - 14*x] + 44*(-1 + x^2)^2*(1 + x^2)^3*(413 - 8*x + 7762*x^2 - 40*x^3 + 18099*x^4 + 48*x^5 + 21180*x^6 + 48*x^7 + 18099*x^8 - 40*x^9 + 7762*x^10 - 8*x^11 + 413*x^12)*Cos[(3*Pi)/22 - 14*x] - 1056*(-1 + x^2)^2*(1 + x^2)^4*(17 - 2*x + 301*x^2 - 8*x^3 + 450*x^4 + 20*x^5 + 450*x^6 - 8*x^7 + 301*x^8 - 2*x^9 + 17*x^10)*Cos[(5*Pi)/22 - 14*x] - 
   11*(-1 + x^2)^2*(24547 - 48*x + 135563*x^2 - 192*x^3 + 343804*x^4 + 576*x^5 + 563948*x^6 + 192*x^7 + 701610*x^8 - 1056*x^9 + 701610*x^10 + 192*x^11 + 563948*x^12 + 576*x^13 + 343804*x^14 - 192*x^15 + 135563*x^16 - 48*x^17 + 24547*x^18)*Cos[Pi/22 - 12*x] - 22*(-1 + x^2)^2*(12691 - 363*x + 108935*x^2 - 4480*x^3 + 375232*x^4 - 18340*x^5 + 763352*x^6 + 2752*x^7 + 1099086*x^8 + 40862*x^9 + 1099086*x^10 + 2752*x^11 + 763352*x^12 - 18340*x^13 + 375232*x^14 - 4480*x^15 + 108935*x^16 - 363*x^17 + 12691*x^18)*Cos[(3*Pi)/22 - 10*x] + 
   44*(-1 + x^2)^2*(16295 + 167*x + 72447*x^2 + 488*x^3 + 155964*x^4 + 2180*x^5 + 251340*x^6 + 12888*x^7 + 290386*x^8 - 31446*x^9 + 290386*x^10 + 12888*x^11 + 251340*x^12 + 2180*x^13 + 155964*x^14 + 488*x^15 + 72447*x^16 + 167*x^17 + 16295*x^18)*Cos[Pi/22 - 8*x] - 44*(-1 + x^2)^2*(16373 + 999*x + 76477*x^2 + 13080*x^3 + 189364*x^4 + 72932*x^5 + 386276*x^6 + 270888*x^7 + 707766*x^8 + 463850*x^9 + 707766*x^10 + 270888*x^11 + 386276*x^12 + 72932*x^13 + 189364*x^14 + 13080*x^15 + 76477*x^16 + 999*x^17 + 16373*x^18)*Cos[(3*Pi)/22 - 8*x] + 
   44*(-1 + x^2)^2*(16015 - 2003*x + 63751*x^2 - 28840*x^3 + 78204*x^4 - 179860*x^5 - 134196*x^6 - 651928*x^7 - 613598*x^8 - 1027250*x^9 - 613598*x^10 - 651928*x^11 - 134196*x^12 - 179860*x^13 + 78204*x^14 - 28840*x^15 + 63751*x^16 - 2003*x^17 + 16015*x^18)*Cos[(5*Pi)/22 - 8*x] - 22*(-1 + x^2)^2*(52199 - 345*x + 315499*x^2 - 10560*x^3 + 899168*x^4 - 54156*x^5 + 1682776*x^6 - 112896*x^7 + 2555382*x^8 + 355914*x^9 + 2555382*x^10 - 112896*x^11 + 1682776*x^12 - 54156*x^13 + 899168*x^14 - 10560*x^15 + 315499*x^16 - 345*x^17 + 52199*x^18)*Cos[Pi/22 - 6*x] + 
   22*(52771 + 4399*x + 234321*x^2 + 52642*x^3 + 475893*x^4 + 275331*x^5 + 786607*x^6 + 982808*x^7 + 1480446*x^8 + 3255374*x^9 + 4834282*x^10 + 6587532*x^11 + 4834282*x^12 + 3255374*x^13 + 1480446*x^14 + 982808*x^15 + 786607*x^16 + 275331*x^17 + 475893*x^18 + 52642*x^19 + 234321*x^20 + 4399*x^21 + 52771*x^22)*Cos[(3*Pi)/22 - 6*x] - 22*(-1 + x^2)^2*(51891 - 3691*x + 305759*x^2 - 47488*x^3 + 827048*x^4 - 208292*x^5 + 1552080*x^6 - 13632*x^7 + 2768246*x^8 + 546206*x^9 + 2768246*x^10 - 13632*x^11 + 1552080*x^12 - 208292*x^13 + 827048*x^14 - 47488*x^15 + 305759*x^16 - 3691*x^17 + 51891*x^18)*
    Cos[(5*Pi)/22 - 6*x] - 11*(-1 + x^2)^2*(72015 + 6240*x + 310551*x^2 + 102720*x^3 + 813036*x^4 + 590592*x^5 + 2145436*x^6 + 2003648*x^7 + 4916498*x^8 + 5603648*x^9 + 4916498*x^10 + 2003648*x^11 + 2145436*x^12 + 590592*x^13 + 813036*x^14 + 102720*x^15 + 310551*x^16 + 6240*x^17 + 72015*x^18)*Cos[Pi/22 - 4*x] + 11*(-1 + x^2)^2*(70013 - 9616*x + 231445*x^2 - 142464*x^3 + 145220*x^4 - 945600*x^5 - 1033516*x^6 - 3497856*x^7 - 4918186*x^8 - 7324000*x^9 - 4918186*x^10 - 3497856*x^11 - 1033516*x^12 - 945600*x^13 + 145220*x^14 - 142464*x^15 + 231445*x^16 - 9616*x^17 + 70013*x^18)*Cos[(3*Pi)/22 - 4*x] - 
   11*(-1 + x^2)^2*(71223 + 3024*x + 285567*x^2 + 16512*x^3 + 555340*x^4 - 123712*x^5 + 438524*x^6 - 275584*x^7 + 1401858*x^8 + 759520*x^9 + 1401858*x^10 - 275584*x^11 + 438524*x^12 - 123712*x^13 + 555340*x^14 + 16512*x^15 + 285567*x^16 + 3024*x^17 + 71223*x^18)*Cos[(5*Pi)/22 - 4*x] + 44*(49997 + 3621*x + 173407*x^2 + 48822*x^3 + 294011*x^4 + 230337*x^5 + 476033*x^6 + 635912*x^7 + 1205090*x^8 + 1392922*x^9 + 3306486*x^10 + 6386820*x^11 + 3306486*x^12 + 1392922*x^13 + 1205090*x^14 + 635912*x^15 + 476033*x^16 + 230337*x^17 + 294011*x^18 + 48822*x^19 + 173407*x^20 + 3621*x^21 + 49997*x^22)*
    Cos[Pi/22 - 2*x] - 44*(-1 + x^2)^2*(49568 - 1083*x + 257024*x^2 - 17792*x^3 + 651936*x^4 - 90468*x^5 + 1160160*x^6 - 177472*x^7 + 2010080*x^8 + 573630*x^9 + 2010080*x^10 - 177472*x^11 + 1160160*x^12 - 90468*x^13 + 651936*x^14 - 17792*x^15 + 257024*x^16 - 1083*x^17 + 49568*x^18)*Cos[(3*Pi)/22 - 2*x] + 44*(-1 + x^2)^2*(49667 - 129*x + 262895*x^2 - 4800*x^3 + 697256*x^4 - 21740*x^5 + 1364304*x^6 + 96384*x^7 + 1754646*x^8 - 139430*x^9 + 1754646*x^10 + 96384*x^11 + 1364304*x^12 - 21740*x^13 + 697256*x^14 - 4800*x^15 + 262895*x^16 - 129*x^17 + 49667*x^18)*Cos[(5*Pi)/22 - 2*x] - 
   44*(-1 + x)^2*(49997 + 96373*x + 316156*x^2 + 487117*x^3 + 952089*x^4 + 1186724*x^5 + 1897392*x^6 + 1972148*x^7 + 3251994*x^8 + 3138918*x^9 + 6332328*x^10 + 3138918*x^11 + 3251994*x^12 + 1972148*x^13 + 1897392*x^14 + 1186724*x^15 + 952089*x^16 + 487117*x^17 + 316156*x^18 + 96373*x^19 + 49997*x^20)*Cos[Pi/22 + 2*x] + 44*(-1 + x^2)^2*(49568 + 1083*x + 257024*x^2 + 17792*x^3 + 651936*x^4 + 90468*x^5 + 1160160*x^6 + 177472*x^7 + 2010080*x^8 - 573630*x^9 + 2010080*x^10 + 177472*x^11 + 1160160*x^12 + 90468*x^13 + 651936*x^14 + 17792*x^15 + 257024*x^16 + 1083*x^17 + 49568*x^18)*Cos[(3*Pi)/22 + 2*x] - 
   44*(-1 + x^2)^2*(49667 + 129*x + 262895*x^2 + 4800*x^3 + 697256*x^4 + 21740*x^5 + 1364304*x^6 - 96384*x^7 + 1754646*x^8 + 139430*x^9 + 1754646*x^10 - 96384*x^11 + 1364304*x^12 + 21740*x^13 + 697256*x^14 + 4800*x^15 + 262895*x^16 + 129*x^17 + 49667*x^18)*Cos[(5*Pi)/22 + 2*x] + 11*(-1 + x^2)^2*(72015 - 6240*x + 310551*x^2 - 102720*x^3 + 813036*x^4 - 590592*x^5 + 2145436*x^6 - 2003648*x^7 + 4916498*x^8 - 5603648*x^9 + 4916498*x^10 - 2003648*x^11 + 2145436*x^12 - 590592*x^13 + 813036*x^14 - 102720*x^15 + 310551*x^16 - 6240*x^17 + 72015*x^18)*Cos[Pi/22 + 4*x] - 
   11*(-1 + x^2)^2*(70013 + 9616*x + 231445*x^2 + 142464*x^3 + 145220*x^4 + 945600*x^5 - 1033516*x^6 + 3497856*x^7 - 4918186*x^8 + 7324000*x^9 - 4918186*x^10 + 3497856*x^11 - 1033516*x^12 + 945600*x^13 + 145220*x^14 + 142464*x^15 + 231445*x^16 + 9616*x^17 + 70013*x^18)*Cos[(3*Pi)/22 + 4*x] + 11*(-1 + x^2)^2*(71223 - 3024*x + 285567*x^2 - 16512*x^3 + 555340*x^4 + 123712*x^5 + 438524*x^6 + 275584*x^7 + 1401858*x^8 - 759520*x^9 + 1401858*x^10 + 275584*x^11 + 438524*x^12 + 123712*x^13 + 555340*x^14 - 16512*x^15 + 285567*x^16 - 3024*x^17 + 71223*x^18)*Cos[(5*Pi)/22 + 4*x] + 
   22*(-1 + x^2)^2*(52199 + 345*x + 315499*x^2 + 10560*x^3 + 899168*x^4 + 54156*x^5 + 1682776*x^6 + 112896*x^7 + 2555382*x^8 - 355914*x^9 + 2555382*x^10 + 112896*x^11 + 1682776*x^12 + 54156*x^13 + 899168*x^14 + 10560*x^15 + 315499*x^16 + 345*x^17 + 52199*x^18)*Cos[Pi/22 + 6*x] - 22*(-1 + x)^2*(52771 + 101143*x + 383836*x^2 + 613887*x^3 + 1319831*x^4 + 1750444*x^5 + 2967664*x^6 + 3202076*x^7 + 4916934*x^8 + 3376418*x^9 + 6670184*x^10 + 3376418*x^11 + 4916934*x^12 + 3202076*x^13 + 2967664*x^14 + 1750444*x^15 + 1319831*x^16 + 613887*x^17 + 383836*x^18 + 101143*x^19 + 52771*x^20)*Cos[(3*Pi)/22 + 6*x] + 
   22*(-1 + x^2)^2*(51891 + 3691*x + 305759*x^2 + 47488*x^3 + 827048*x^4 + 208292*x^5 + 1552080*x^6 + 13632*x^7 + 2768246*x^8 - 546206*x^9 + 2768246*x^10 + 13632*x^11 + 1552080*x^12 + 208292*x^13 + 827048*x^14 + 47488*x^15 + 305759*x^16 + 3691*x^17 + 51891*x^18)*Cos[(5*Pi)/22 + 6*x] - 44*(-1 + x^2)^2*(16295 - 167*x + 72447*x^2 - 488*x^3 + 155964*x^4 - 2180*x^5 + 251340*x^6 - 12888*x^7 + 290386*x^8 + 31446*x^9 + 290386*x^10 - 12888*x^11 + 251340*x^12 - 2180*x^13 + 155964*x^14 - 488*x^15 + 72447*x^16 - 167*x^17 + 16295*x^18)*Cos[Pi/22 + 8*x] + 
   44*(-1 + x^2)^2*(16373 - 999*x + 76477*x^2 - 13080*x^3 + 189364*x^4 - 72932*x^5 + 386276*x^6 - 270888*x^7 + 707766*x^8 - 463850*x^9 + 707766*x^10 - 270888*x^11 + 386276*x^12 - 72932*x^13 + 189364*x^14 - 13080*x^15 + 76477*x^16 - 999*x^17 + 16373*x^18)*Cos[(3*Pi)/22 + 8*x] - 44*(-1 + x^2)^2*(16015 + 2003*x + 63751*x^2 + 28840*x^3 + 78204*x^4 + 179860*x^5 - 134196*x^6 + 651928*x^7 - 613598*x^8 + 1027250*x^9 - 613598*x^10 + 651928*x^11 - 134196*x^12 + 179860*x^13 + 78204*x^14 + 28840*x^15 + 63751*x^16 + 2003*x^17 + 16015*x^18)*Cos[(5*Pi)/22 + 8*x] - 
   22*(-1 + x^2)^2*(12691 + 163*x + 109863*x^2 + 832*x^3 + 383904*x^4 + 1732*x^5 + 782968*x^6 - 2688*x^7 + 1069870*x^8 - 78*x^9 + 1069870*x^10 - 2688*x^11 + 782968*x^12 + 1732*x^13 + 383904*x^14 + 832*x^15 + 109863*x^16 + 163*x^17 + 12691*x^18)*Cos[Pi/22 + 10*x] + 22*(-1 + x^2)^2*(12691 + 363*x + 108935*x^2 + 4480*x^3 + 375232*x^4 + 18340*x^5 + 763352*x^6 - 2752*x^7 + 1099086*x^8 - 40862*x^9 + 1099086*x^10 - 2752*x^11 + 763352*x^12 + 18340*x^13 + 375232*x^14 + 4480*x^15 + 108935*x^16 + 363*x^17 + 12691*x^18)*Cos[(3*Pi)/22 + 10*x] + 
   11*(-1 + x^2)^2*(24547 + 48*x + 135563*x^2 + 192*x^3 + 343804*x^4 - 576*x^5 + 563948*x^6 - 192*x^7 + 701610*x^8 + 1056*x^9 + 701610*x^10 - 192*x^11 + 563948*x^12 - 576*x^13 + 343804*x^14 + 192*x^15 + 135563*x^16 + 48*x^17 + 24547*x^18)*Cos[Pi/22 + 12*x] + 11*(-1 + x^2)^2*(24747 - 1472*x + 141523*x^2 - 16640*x^3 + 386524*x^4 - 96000*x^5 + 742092*x^6 - 278272*x^7 + 1064410*x^8 - 394880*x^9 + 1064410*x^10 - 278272*x^11 + 742092*x^12 - 96000*x^13 + 386524*x^14 - 16640*x^15 + 141523*x^16 - 1472*x^17 + 24747*x^18)*Cos[(5*Pi)/22 + 12*x] + 
   264*(-1 + x^2)^2*(1 + x^2)^3*(69 + 1298*x^2 + 3019*x^4 + 3516*x^6 + 3019*x^8 + 1298*x^10 + 69*x^12)*Cos[Pi/22 + 14*x] - 44*(-1 + x^2)^2*(1 + x^2)^3*(413 + 8*x + 7762*x^2 + 40*x^3 + 18099*x^4 - 48*x^5 + 21180*x^6 - 48*x^7 + 18099*x^8 + 40*x^9 + 7762*x^10 + 8*x^11 + 413*x^12)*Cos[(3*Pi)/22 + 14*x] + 1056*(-1 + x^2)^2*(1 + x^2)^4*(17 + 2*x + 301*x^2 + 8*x^3 + 450*x^4 - 20*x^5 + 450*x^6 + 8*x^7 + 301*x^8 + 2*x^9 + 17*x^10)*Cos[(5*Pi)/22 + 14*x] - 176*(-1 + x^2)^2*(1 + x^2)^5*(247 + 612*x^2 + 330*x^4 + 612*x^6 + 247*x^8)*Cos[Pi/22 + 16*x] + 
   176*(-1 + x^2)^2*(1 + x^2)^5*(247 + 612*x^2 + 330*x^4 + 612*x^6 + 247*x^8)*Cos[(3*Pi)/22 + 16*x] - 176*(-1 + x^2)^2*(1 + x^2)^5*(247 + 612*x^2 + 330*x^4 + 612*x^6 + 247*x^8)*Cos[(5*Pi)/22 + 16*x] + 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Cos[Pi/22 + 18*x] - 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Cos[(3*Pi)/22 + 18*x] + 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Cos[(5*Pi)/22 + 18*x] + 2816*(-1 + x^2)^2*(1 + x^2)^9*Cos[Pi/22 + 20*x] - 2816*(-1 + x^2)^2*(1 + x^2)^9*Cos[(3*Pi)/22 + 20*x] - 
   22*(-1 + x)^2*(13031 + 23703*x + 128540*x^2 + 206095*x^3 + 531179*x^4 + 703964*x^5 + 1301296*x^6 + 1292844*x^7 + 2303662*x^8 + 1508946*x^9 + 2847848*x^10 + 1508946*x^11 + 2303662*x^12 + 1292844*x^13 + 1301296*x^14 + 703964*x^15 + 531179*x^16 + 206095*x^17 + 128540*x^18 + 23703*x^19 + 13031*x^20)*Cos[(5/22)*(Pi + 44*x)] - 44*(-1 + x)^2*(1 + x^2)^3*(473 + 498*x + 9059*x^2 + 13716*x^3 + 30401*x^4 + 26670*x^5 + 54275*x^6 + 24728*x^7 + 54275*x^8 + 26670*x^9 + 30401*x^10 + 13716*x^11 + 9059*x^12 + 498*x^13 + 473*x^14)*Cos[(7/22)*(Pi + 44*x)] + 
   5632*(-1 + x)^2*x*(1 + x^2)^7*(1 - 6*x - 6*x^2 - 6*x^3 + x^4)*Cos[(9/22)*(Pi + 44*x)] - 11*(-1 + x^2)^2*(24569 - 64*x + 135985*x^2 - 512*x^3 + 345204*x^4 - 2816*x^5 + 565188*x^6 + 512*x^7 + 698526*x^8 + 5760*x^9 + 698526*x^10 + 512*x^11 + 565188*x^12 - 2816*x^13 + 345204*x^14 - 512*x^15 + 135985*x^16 - 64*x^17 + 24569*x^18)*Cos[(3/22)*(Pi + 88*x)] + 2816*(-1 + x^2)^2*(1 + x^2)^9*Cos[(5/22)*(Pi + 88*x)] - 176*x*(-1 + x^2)^8*(31 - 14*x^2 + 31*x^4)*Sin[Pi/11] - 88*x*(-1 + x^2)^6*(399 - 604*x^2 + 1690*x^4 - 604*x^6 + 399*x^8)*Sin[(2*Pi)/11] - 
   704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Sin[(2/11)*(Pi - 99*x)] + 176*(-1 + x^2)^2*(1 + x^2)^5*(249 - 16*x + 668*x^2 - 112*x^3 + 470*x^4 - 112*x^5 + 668*x^6 - 16*x^7 + 249*x^8)*Sin[(2/11)*(Pi - 88*x)] - 11*(-1 + x^2)^2*(23859 + 5056*x + 114715*x^2 + 69376*x^3 + 157564*x^4 + 406272*x^5 - 170772*x^6 + 1110272*x^7 - 715190*x^8 + 1536640*x^9 - 715190*x^10 + 1110272*x^11 - 170772*x^12 + 406272*x^13 + 157564*x^14 + 69376*x^15 + 114715*x^16 + 5056*x^17 + 23859*x^18)*Sin[(2/11)*(Pi - 66*x)] + 
   22*(-1 + x^2)^2*(12221 + 3473*x + 96577*x^2 + 38720*x^3 + 312232*x^4 + 91180*x^5 + 724000*x^6 - 37632*x^7 + 1214266*x^8 - 191482*x^9 + 1214266*x^10 - 37632*x^11 + 724000*x^12 + 91180*x^13 + 312232*x^14 + 38720*x^15 + 96577*x^16 + 3473*x^17 + 12221*x^18)*Sin[(2/11)*(Pi - 55*x)] + 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[Pi/11 - 20*x] - 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[(2*Pi)/11 - 20*x] - 176*(-1 + x^2)^2*(1 + x^2)^5*(221 + 176*x + 76*x^2 + 976*x^3 - 850*x^4 + 976*x^5 + 76*x^6 + 176*x^7 + 221*x^8)*Sin[Pi/11 - 16*x] + 
   44*(-1 + x^2)^2*(1 + x^2)^3*(163 + 1336*x + 4846*x^2 + 3096*x^3 + 17933*x^4 - 4432*x^5 + 27844*x^6 - 4432*x^7 + 17933*x^8 + 3096*x^9 + 4846*x^10 + 1336*x^11 + 163*x^12)*Sin[Pi/11 - 14*x] + 11*(-1 + x^2)^2*(25489 - 2864*x + 137929*x^2 + 5184*x^3 + 324500*x^4 + 29760*x^5 + 540900*x^6 - 5184*x^7 + 740654*x^8 - 53792*x^9 + 740654*x^10 - 5184*x^11 + 540900*x^12 + 29760*x^13 + 324500*x^14 + 5184*x^15 + 137929*x^16 - 2864*x^17 + 25489*x^18)*Sin[Pi/11 - 12*x] - 
   22*(-1 + x^2)^2*(12671 + 1126*x + 106967*x^2 + 3840*x^3 + 386652*x^4 - 8440*x^5 + 792300*x^6 - 4480*x^7 + 1060706*x^8 + 15908*x^9 + 1060706*x^10 - 4480*x^11 + 792300*x^12 - 8440*x^13 + 386652*x^14 + 3840*x^15 + 106967*x^16 + 1126*x^17 + 12671*x^18)*Sin[Pi/11 - 10*x] - 44*(-1 + x^2)^2*(16381 - 278*x + 72181*x^2 + 1872*x^3 + 153700*x^4 - 2344*x^5 + 244532*x^6 - 3024*x^7 + 299638*x^8 + 7548*x^9 + 299638*x^10 - 3024*x^11 + 244532*x^12 - 2344*x^13 + 153700*x^14 + 1872*x^15 + 72181*x^16 - 278*x^17 + 16381*x^18)*Sin[Pi/11 - 8*x] + 
   44*(-1 + x^2)^2*(16423 - 949*x + 75359*x^2 - 2168*x^3 + 145884*x^4 + 28660*x^5 + 205484*x^6 + 6072*x^7 + 343282*x^8 - 63230*x^9 + 343282*x^10 + 6072*x^11 + 205484*x^12 + 28660*x^13 + 145884*x^14 - 2168*x^15 + 75359*x^16 - 949*x^17 + 16423*x^18)*Sin[(2*Pi)/11 - 8*x] + 22*(-1 + x^2)^2*(52055 + 1138*x + 320735*x^2 - 2304*x^3 + 946060*x^4 - 1256*x^5 + 1770172*x^6 + 7552*x^7 + 2416002*x^8 - 10260*x^9 + 2416002*x^10 + 7552*x^11 + 1770172*x^12 - 1256*x^13 + 946060*x^14 - 2304*x^15 + 320735*x^16 + 1138*x^17 + 52055*x^18)*Sin[Pi/11 - 6*x] - 
   22*(-1 + x^2)^2*(52293 + 643*x + 316745*x^2 + 15936*x^3 + 923528*x^4 - 17596*x^5 + 1837824*x^6 - 40320*x^7 + 2374634*x^8 + 82674*x^9 + 2374634*x^10 - 40320*x^11 + 1837824*x^12 - 17596*x^13 + 923528*x^14 + 15936*x^15 + 316745*x^16 + 643*x^17 + 52293*x^18)*Sin[(2*Pi)/11 - 6*x] + 11*(-1 + x^2)^2*(71797 - 304*x + 276109*x^2 + 1728*x^3 + 546660*x^4 - 6848*x^5 + 802292*x^6 + 16704*x^7 + 1055654*x^8 - 22560*x^9 + 1055654*x^10 + 16704*x^11 + 802292*x^12 - 6848*x^13 + 546660*x^14 + 1728*x^15 + 276109*x^16 - 304*x^17 + 71797*x^18)*Sin[Pi/11 - 4*x] - 
   11*(-1 + x^2)^2*(71135 - 2000*x + 284903*x^2 + 7552*x^3 + 501100*x^4 + 15168*x^5 + 892828*x^6 - 96640*x^7 + 1002546*x^8 + 151840*x^9 + 1002546*x^10 - 96640*x^11 + 892828*x^12 + 15168*x^13 + 501100*x^14 + 7552*x^15 + 284903*x^16 - 2000*x^17 + 71135*x^18)*Sin[(2*Pi)/11 - 4*x] - 88*(-1 + x^2)^2*(24861 + 95*x + 133003*x^2 - 544*x^3 + 356438*x^4 + 1364*x^5 + 658074*x^6 - 2080*x^7 + 892008*x^8 + 2330*x^9 + 892008*x^10 - 2080*x^11 + 658074*x^12 + 1364*x^13 + 356438*x^14 - 544*x^15 + 133003*x^16 + 95*x^17 + 24861*x^18)*Sin[Pi/11 - 2*x] + 
   44*(-1 + x^2)^2*(49678 + 313*x + 263726*x^2 + 2432*x^3 + 721096*x^4 - 13172*x^5 + 1305608*x^6 + 25792*x^7 + 1788660*x^8 - 30730*x^9 + 1788660*x^10 + 25792*x^11 + 1305608*x^12 - 13172*x^13 + 721096*x^14 + 2432*x^15 + 263726*x^16 + 313*x^17 + 49678*x^18)*Sin[(2*Pi)/11 - 2*x] - 88*(-1 + x^2)^2*(24933 + 132587*x^2 + 357438*x^4 + 656850*x^6 + 892576*x^8 + 892576*x^10 + 656850*x^12 + 357438*x^14 + 132587*x^16 + 24933*x^18)*Sin[2*x] + 11*(-1 + x^2)^2*(71095 + 279167*x^2 + 540620*x^4 + 809084*x^6 + 1052546*x^8 + 1052546*x^10 + 809084*x^12 + 540620*x^14 + 279167*x^16 + 71095*x^18)*Sin[4*x] + 
   22*(-1 + x^2)^2*(52469 + 321557*x^2 + 939580*x^4 + 1780540*x^6 + 2410878*x^8 + 2410878*x^10 + 1780540*x^12 + 939580*x^14 + 321557*x^16 + 52469*x^18)*Sin[6*x] - 44*(-1 + x^2)^2*(16415 + 72039*x^2 + 155692*x^4 + 239068*x^6 + 303218*x^8 + 303218*x^10 + 239068*x^12 + 155692*x^14 + 72039*x^16 + 16415*x^18)*Sin[8*x] - 22*(-1 + x^2)^2*(12349 + 111213*x^2 + 386380*x^4 + 778028*x^6 + 1071326*x^8 + 1071326*x^10 + 778028*x^12 + 386380*x^14 + 111213*x^16 + 12349*x^18)*Sin[10*x] + 
   11*(-1 + x^2)^2*(24619 + 134995*x^2 + 343772*x^4 + 566732*x^6 + 699354*x^8 + 699354*x^10 + 566732*x^12 + 343772*x^14 + 134995*x^16 + 24619*x^18)*Sin[12*x] + 44*(-1 + x^2)^2*(1 + x^2)^3*(309 + 7714*x^2 + 19099*x^4 + 19484*x^6 + 19099*x^8 + 7714*x^10 + 309*x^12)*Sin[14*x] - 176*(-1 + x^2)^2*(1 + x^2)^5*(277 + 428*x^2 + 638*x^4 + 428*x^6 + 277*x^8)*Sin[16*x] + 11264*(-1 + x^2)^2*(1 + x^2)^7*(1 - 4*x^2 + x^4)*Sin[18*x] - 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[20*x] + 1024*(1 + x^2)^11*Sin[22*x] + 
   88*(-1 + x^2)^2*(24861 - 95*x + 133003*x^2 + 544*x^3 + 356438*x^4 - 1364*x^5 + 658074*x^6 + 2080*x^7 + 892008*x^8 - 2330*x^9 + 892008*x^10 + 2080*x^11 + 658074*x^12 - 1364*x^13 + 356438*x^14 + 544*x^15 + 133003*x^16 - 95*x^17 + 24861*x^18)*Sin[Pi/11 + 2*x] - 44*(-1 + x^2)^2*(49678 - 313*x + 263726*x^2 - 2432*x^3 + 721096*x^4 + 13172*x^5 + 1305608*x^6 - 25792*x^7 + 1788660*x^8 + 30730*x^9 + 1788660*x^10 - 25792*x^11 + 1305608*x^12 + 13172*x^13 + 721096*x^14 - 2432*x^15 + 263726*x^16 - 313*x^17 + 49678*x^18)*Sin[(2*Pi)/11 + 2*x] - 
   11*(-1 + x^2)^2*(71797 + 304*x + 276109*x^2 - 1728*x^3 + 546660*x^4 + 6848*x^5 + 802292*x^6 - 16704*x^7 + 1055654*x^8 + 22560*x^9 + 1055654*x^10 - 16704*x^11 + 802292*x^12 + 6848*x^13 + 546660*x^14 - 1728*x^15 + 276109*x^16 + 304*x^17 + 71797*x^18)*Sin[Pi/11 + 4*x] + 11*(-1 + x^2)^2*(71135 + 2000*x + 284903*x^2 - 7552*x^3 + 501100*x^4 - 15168*x^5 + 892828*x^6 + 96640*x^7 + 1002546*x^8 - 151840*x^9 + 1002546*x^10 + 96640*x^11 + 892828*x^12 - 15168*x^13 + 501100*x^14 - 7552*x^15 + 284903*x^16 + 2000*x^17 + 71135*x^18)*Sin[(2*Pi)/11 + 4*x] - 
   22*(-1 + x^2)^2*(52055 - 1138*x + 320735*x^2 + 2304*x^3 + 946060*x^4 + 1256*x^5 + 1770172*x^6 - 7552*x^7 + 2416002*x^8 + 10260*x^9 + 2416002*x^10 - 7552*x^11 + 1770172*x^12 + 1256*x^13 + 946060*x^14 + 2304*x^15 + 320735*x^16 - 1138*x^17 + 52055*x^18)*Sin[Pi/11 + 6*x] + 22*(-1 + x^2)^2*(52293 - 643*x + 316745*x^2 - 15936*x^3 + 923528*x^4 + 17596*x^5 + 1837824*x^6 + 40320*x^7 + 2374634*x^8 - 82674*x^9 + 2374634*x^10 + 40320*x^11 + 1837824*x^12 + 17596*x^13 + 923528*x^14 - 15936*x^15 + 316745*x^16 - 643*x^17 + 52293*x^18)*Sin[(2*Pi)/11 + 6*x] + 
   44*(-1 + x^2)^2*(16381 + 278*x + 72181*x^2 - 1872*x^3 + 153700*x^4 + 2344*x^5 + 244532*x^6 + 3024*x^7 + 299638*x^8 - 7548*x^9 + 299638*x^10 + 3024*x^11 + 244532*x^12 + 2344*x^13 + 153700*x^14 - 1872*x^15 + 72181*x^16 + 278*x^17 + 16381*x^18)*Sin[Pi/11 + 8*x] - 44*(-1 + x^2)^2*(16423 + 949*x + 75359*x^2 + 2168*x^3 + 145884*x^4 - 28660*x^5 + 205484*x^6 - 6072*x^7 + 343282*x^8 + 63230*x^9 + 343282*x^10 - 6072*x^11 + 205484*x^12 - 28660*x^13 + 145884*x^14 + 2168*x^15 + 75359*x^16 + 949*x^17 + 16423*x^18)*Sin[(2*Pi)/11 + 8*x] + 
   22*(-1 + x^2)^2*(12671 - 1126*x + 106967*x^2 - 3840*x^3 + 386652*x^4 + 8440*x^5 + 792300*x^6 + 4480*x^7 + 1060706*x^8 - 15908*x^9 + 1060706*x^10 + 4480*x^11 + 792300*x^12 + 8440*x^13 + 386652*x^14 - 3840*x^15 + 106967*x^16 - 1126*x^17 + 12671*x^18)*Sin[Pi/11 + 10*x] - 11*(-1 + x^2)^2*(25489 + 2864*x + 137929*x^2 - 5184*x^3 + 324500*x^4 - 29760*x^5 + 540900*x^6 + 5184*x^7 + 740654*x^8 + 53792*x^9 + 740654*x^10 + 5184*x^11 + 540900*x^12 - 29760*x^13 + 324500*x^14 - 5184*x^15 + 137929*x^16 + 2864*x^17 + 25489*x^18)*Sin[Pi/11 + 12*x] - 
   44*(-1 + x^2)^2*(1 + x^2)^3*(163 - 1336*x + 4846*x^2 - 3096*x^3 + 17933*x^4 + 4432*x^5 + 27844*x^6 + 4432*x^7 + 17933*x^8 - 3096*x^9 + 4846*x^10 - 1336*x^11 + 163*x^12)*Sin[Pi/11 + 14*x] + 176*(-1 + x^2)^2*(1 + x^2)^5*(221 - 176*x + 76*x^2 - 976*x^3 - 850*x^4 - 976*x^5 + 76*x^6 - 176*x^7 + 221*x^8)*Sin[Pi/11 + 16*x] + 5632*x*(1 + x)^2*(1 + x^2)^7*(1 + 6*x - 6*x^2 + 6*x^3 + x^4)*Sin[Pi/11 + 18*x] - 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[Pi/11 + 20*x] + 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[(2*Pi)/11 + 20*x] + 
   22*(-1 + x^2)^2*(12691 - 163*x + 109863*x^2 - 832*x^3 + 383904*x^4 - 1732*x^5 + 782968*x^6 + 2688*x^7 + 1069870*x^8 + 78*x^9 + 1069870*x^10 + 2688*x^11 + 782968*x^12 - 1732*x^13 + 383904*x^14 - 832*x^15 + 109863*x^16 - 163*x^17 + 12691*x^18)*Sin[(5/11)*(Pi + 22*x)] + 11*(-1 + x^2)^2*(24569 + 64*x + 135985*x^2 + 512*x^3 + 345204*x^4 + 2816*x^5 + 565188*x^6 - 512*x^7 + 698526*x^8 - 5760*x^9 + 698526*x^10 - 512*x^11 + 565188*x^12 + 2816*x^13 + 345204*x^14 + 512*x^15 + 135985*x^16 + 64*x^17 + 24569*x^18)*Sin[(4/11)*(Pi + 33*x)] - 
   11*(-1 + x^2)^2*(24747 + 1472*x + 141523*x^2 + 16640*x^3 + 386524*x^4 + 96000*x^5 + 742092*x^6 + 278272*x^7 + 1064410*x^8 + 394880*x^9 + 1064410*x^10 + 278272*x^11 + 742092*x^12 + 96000*x^13 + 386524*x^14 + 16640*x^15 + 141523*x^16 + 1472*x^17 + 24747*x^18)*Sin[(3/11)*(Pi + 44*x)] - 176*(-1 + x^2)^2*(1 + x^2)^5*(247 + 612*x^2 + 330*x^4 + 612*x^6 + 247*x^8)*Sin[(4/11)*(Pi + 44*x)] - 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[(5/11)*(Pi + 44*x)] - 
   22*(-1 + x^2)^2*(12221 - 3473*x + 96577*x^2 - 38720*x^3 + 312232*x^4 - 91180*x^5 + 724000*x^6 + 37632*x^7 + 1214266*x^8 + 191482*x^9 + 1214266*x^10 + 37632*x^11 + 724000*x^12 - 91180*x^13 + 312232*x^14 - 38720*x^15 + 96577*x^16 - 3473*x^17 + 12221*x^18)*Sin[(2/11)*(Pi + 55*x)] + 2816*(-1 + x^2)^2*(1 + x^2)^9*Sin[(4/11)*(Pi + 55*x)] + 11*(-1 + x^2)^2*(23859 - 5056*x + 114715*x^2 - 69376*x^3 + 157564*x^4 - 406272*x^5 - 170772*x^6 - 1110272*x^7 - 715190*x^8 - 1536640*x^9 - 715190*x^10 - 1110272*x^11 - 170772*x^12 - 406272*x^13 + 157564*x^14 - 69376*x^15 + 114715*x^16 - 5056*x^17 + 23859*x^18)*
    Sin[(2/11)*(Pi + 66*x)] - 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Sin[(3/11)*(Pi + 66*x)] + 44*(1 + x)^2*(1 + x^2)^3*(473 - 498*x + 9059*x^2 - 13716*x^3 + 30401*x^4 - 26670*x^5 + 54275*x^6 - 24728*x^7 + 54275*x^8 - 26670*x^9 + 30401*x^10 - 13716*x^11 + 9059*x^12 - 498*x^13 + 473*x^14)*Sin[(2/11)*(Pi + 77*x)] - 176*(-1 + x^2)^2*(1 + x^2)^5*(249 + 16*x + 668*x^2 + 112*x^3 + 470*x^4 + 112*x^5 + 668*x^6 + 16*x^7 + 249*x^8)*Sin[(2/11)*(Pi + 88*x)] + 704*(-1 + x^2)^2*(1 + x^2)^7*(1 - 34*x^2 + x^4)*Sin[(2/11)*(Pi + 99*x)])

using Plot[ConditionalExpression[1, -3 <= compiledfunc[x] <= 3], {x, 12, 13}, PlotPoints -> 100000, PlotStyle -> Directive[Red, CapForm["Butt"], Thickness[.007]], Axes ->{False, False}], I get enter image description here

Phys96
  • 361
  • 1
  • 6
  • when I set the mentioned items a big number, it takes a lot of time That is really to be expected, If you set PlotPoints -> 1000, MaxRecursion -> 15 it will take much longer than PlotPoints -> 20, MaxRecursion -> 2. – Nasser Nov 21 '22 at 21:04
  • @Nasser That is why I am looking for an alternative since small numbers for PlotPoints and MaxRecursion does not help me. Actually, I ran PlotPoints-> 200000 and MaxRecursion-> 15, and WorkingPrecision->500 on a PC and I am waiting for the result but I need to do this for a large number of functions so it might be disappointing. – Phys96 Nov 21 '22 at 21:44
  • Why did you use Func:= instead of Func= ? – userrandrand Nov 22 '22 at 11:03
  • @userrandrand It was just a mistake. Does this $:=$ increase timing? – Phys96 Nov 22 '22 at 13:01
  • := means that no evaluations are done on the right side until the function is evaluated in an another cell. In Func there is nothing to evaluate so I would not expect any significant time difference when compared to =. I just did not see why you did not use Func= instead as I did not notice any particular reason to use :=. – userrandrand Nov 22 '22 at 14:33
  • 1
    Since you are new, allow me to add the point that a good practice is not to use capitals when naming things. Only internally named functions and constants start with capitals, then, and you avoid clashes with items like I, N, D, E, etc. – Nicholas G Nov 23 '22 at 00:08

1 Answers1

1

I will address 3 points:

  • There is a pole that is easy to remove.

  • The function is very long you might want to compile it.

  • I do not understand why you want such high precision in a plot but there are other ways to obtain those lines


Removing the poles from the analysis

The function has poles from the Csc function. They can be removed by considering instead the function:

deflated = Func[x]/Csc[x]^11;

I placed an explantion of how I found that at the end of this section and before the next section.

Then, instead of considering the equation Func[x]==3 for example we can consider deflated==3*Sin[x]^11 or deflated-3*Sin[x]^11 which is a non singular equation in the interval you are considering (note there are still poles at x=1 and x=-1).


How I found that in that long expression:

I checked the different types of functions by using

Cases[Func[x], _[_], All] // DeleteDuplicates

I noticed the Csc. I looked for its positions in the expression using:

Position[Func[x], Csc[x]]

I obtained {{4, 1}}

Func[x][[4]]

evaluates to

Csc[x]^11

I checked the Head of Func and saw it is times, I check the number of terms with Length and used //Together //Denominator on the most complicated term to check that there are no other poles



Compilation

It turns out that your problem seems to require high accuracy which Compile does not support see however posts on stack exchange that use NumericalFunction to obtain high accuracy.

Also, in the next section NDSolve will be use and there was no benefit in using compilation. As I understand, NDSolve compiles automatically when it sees fit. For a discussion about that see here. The benefit of compilation here is if you really want to use plot.

(see update mentions in bold)

Compiling is tricky because not all functions can be compiled and in the default setting of Compile it will not display any error if it skips compilation and just evaluates the function as usual. To make compile complain if something is wrong :

SetSystemOptions[
  "CompileOptions" -> "CompileReportExternal" -> True];
On[Compile::noinfo]

I do not remember what each one does I just remember I saved them for whenever I want to compile a function. If you are interested see this reference on stack exchange here

I changed Func:= to Func[x_]:= because I do not see the point of Func:= in that expression. To compile the function one may use:

Note: …=\[Ellipsis]

update

deflated…compiled = 
  Compile[{{x, _Real}}, Evaluate@deflated];

Test the speed difference:

update

RepeatedTiming[
  deflated…compiled[
    RandomReal[{11, 16}]];] // ScientificForm

RepeatedTiming[deflated /. x -> RandomReal[{11, 16}];] // ScientificForm // TeXForm

$$\left\{2.31868\times 10^{-5},\text{Null}\right\}$$

$$\left\{1.46028\times 10^{-3},\text{Null}\right\}$$

So you might expect a 10 to 100 times speed up.


Alternative method using NDSolve (updated)

To obtain crossings of a function $f$ one can solve the differential equation:

$$y'(x)=f'(x), \qquad y(x_{\text{min}})=f(x_{\text{min}})$$

such that $y(x)=f(x)$ and use WhenEvent to detect special points such as crossings. We will compare the compile and non compiled case.

The crossing condition can be written as :

Abs[deflated]==Abs[3*Sin[x]^11]

where Abs was introduced to incorporate both Func[x]==3 and Func[x]==-3

Default precision

Solve the differential equation with WhenEvent:

xmin = 11;
xmax = 16; AbsoluteTiming[
 res = Reap[
    NDSolve[{s'[x] == ddeflated, s[xmin] == (deflated /. x -> xmin), 
      WhenEvent[Abs[s[x]] == Abs[3*Sin[x]^11], Sow[x]]}, 
     s, {x, xmin, xmax}]];]

Timing: 0.12 seconds

Check:

Plot[Abs[s[x]] - Abs[3*Sin[x]^11] /. res[[1, 1, 1]], {x, xmin, xmax}, 
 PlotRange -> {-0.1, 0.1}, 
 Epilog -> {PointSize[Large], Red, Point[{#, 0} & /@ res[[2, 1]]]}]

The red points bellow represent the crossings Func[x]==3 or Func[x]==-3 which are translated to zeroes of the functions considered in the plot.

enter image description here

Notice that there are no zeroes in the interval you showed in your update. This is in fact an artifact here of low precision and there are indeed 0's in that interval.

  • High Precision

Solve the differential equation (I did not check if a lower precision is enough) :

xmin = 11;
xmax = 16; AbsoluteTiming[
 res = Reap[
    NDSolve[{s'[x] == ddeflated, s[xmin] == (deflated /. x -> xmin), 
      WhenEvent[Abs[s[x]] == Abs[3*Sin[x]^11], Sow[x]]}, 
     s, {x, xmin, xmax}, PrecisionGoal -> 15, AccuracyGoal -> 15, 
     WorkingPrecision -> 20]];]

Timing : 13.4 seconds

Plot[Abs[s[x]] - Abs[3*Sin[x]^11] /. res[[1, 1, 1]], {x, xmin, xmax}, 
 PlotRange -> {-0.1, 0.1}, 
 Epilog -> {PointSize[Large], Red, Point[{#, 0} & /@ res[[2, 1]]]}]

enter image description here

The points can be also viewed with NumberLinePlot :

res[[2, 1]] // NumberLinePlot

enter image description here

We can extract the points between 12 and 13 :

Select[res[[2, 1]], 12 < # < 13 &]

{12.461458413778561480, 12.461645303474289146, 12.473084286833757123, \ 12.474549028597047319, 12.477815775272624841, 12.481004423258161594, \ 12.482612164386612858, 12.487570045422328843, 12.660291420025539393, \ 12.668827725840002865}

From those points you could just draw the lines with Line and Graphics

userrandrand
  • 5,847
  • 6
  • 33
  • 1
    @Phys96 did you use ConditionalExpression[1, -3 <= compiledfunc <= 3] or ConditionalExpression[1, -3 <= compiledfunc[x] <= 3] in the plot ? It should be -3 <= compiledfunc[x] <= 3 – userrandrand Nov 22 '22 at 13:15
  • What alternative ? NDSolve and WhenEvent ? – userrandrand Nov 22 '22 at 13:16
  • @Phys96 I meant did you specify compiledfunc[x] instead of just compiledfunc in the plot – userrandrand Nov 22 '22 at 13:17
  • 1
    On my computer it works with compiledfunc[x] – userrandrand Nov 22 '22 at 13:18
  • Did you check references for how to use WhenEvent like that ? It is a known trick more than a standard procedure – userrandrand Nov 22 '22 at 13:23
  • Sorry, how can I use NDSolve on D[Func[x],x]==0? I am beginner at Mathematica. – Phys96 Nov 22 '22 at 14:05
  • 1
    @Phys96 it has the same precision when using the default working precision. However it is unable to compute high precision for example check the difference between the compiled and non compile versions on N[Pi/4,40] – userrandrand Nov 22 '22 at 14:38
  • 1
    I never used Compile for high precision but you can search here for "Compile Precision". For example this one – userrandrand Nov 22 '22 at 14:40
  • 1
    There is also a new compiler for Mathematica but I do not know how to use it. It supports 64 bit double precision see here – userrandrand Nov 22 '22 at 14:43
  • @Phys96 sorry You should use NDSolve and WhenEvent on y'[x]==D[Func[x],x] that way the solution y[x] if the function Func and you can use WhenEvent to detect crossings as NDSolve traces out the points. – userrandrand Nov 22 '22 at 14:59
  • 1
    @Phys96 sure and I corrected what I wrote in the previous comment the differential equation is y'[x]= D[Func[x],x] – userrandrand Nov 22 '22 at 15:02
  • 1
    @Phys96 I tried using NDSolve directly with Func and the poles in Func caused an issue which is why I rewrote the equation in my answer. – userrandrand Nov 22 '22 at 17:39
  • @Phys96 I checked again with higher precision using PrecisionGoal -> 18, AccuracyGoal -> 18, WorkingPrecision -> 30 and restricting to the interval [12, 13] and I got the points {12.4782422498640194218621429941, 12.4880185884391964508073214141, \ 12.6602135218810309526143122185, 12.6687845842000445421616946743, \ 12.6738359497622442984463355558, 12.6742790429661863361550911413} – userrandrand Nov 22 '22 at 18:05
  • The position and number of crossings seem to depend highly on the precision choices. You should maybe play around with the precision until you have something convincing. – userrandrand Nov 22 '22 at 18:06