I tried to solve for an non-Hookean spring's motion, but the output from Mathematica is weird. It seems that there is inverse functions involved.
DSolve[{x''[t] + x[t]^3 == 0}, x[t], t]
Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >>
Out[1] = {{x[t] -> -I 2^(1/4) Sqrt[-(1/Sqrt[C[1]])] Sqrt[C[1]]
JacobiSN[Sqrt[
Sqrt[2] t^2 Sqrt[C[1]] + 2 Sqrt[2] t Sqrt[C[1]] C[2] +
Sqrt[2] Sqrt[C[1]] C[2]^2]/Sqrt[2], -1]}, {x[t] -> I 2^(1/4) Sqrt[-(1/Sqrt[C[1]])] Sqrt[C[1]] JacobiSN[Sqrt[Sqrt[2] t^2 Sqrt[C[1]] + 2 Sqrt[2] t Sqrt[C[1]] C[2] +
Sqrt[2] Sqrt[C[1]] C[2]^2]/Sqrt[2], -1]}}
If you try Reduce, Mathematica will then give you no output at all, which makes sense because the output is not an equality or inequality.
Also, I added initial values into DSolve, but I'm unable to obtain the answer.
In[1]:= DSolve[{x''[t] + x[t]^3 == 0, x[0] == d, x'[0] == 0}, x[t], t]
Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >>
DSolve::bvfail: For some branches of the general solution, unable to solve the conditions. >>
DSolve::bvfail: For some branches of the general solution, unable to solve the conditions. >>
Out[1]= {}

{ }of the editor to input code and the Image button do add images. – Karsten7 Oct 19 '14 at 04:08