Here is Sašo Živanović's answer turned into a style. The style picks up the level automatically. It takes one optional argument which is the stuff to typeset before resuming the drawing of the tree. Branches are marked if they are to be continued or are continuations, although obviously this kind of stuff is optional and depends on what you need/want. (Right now, it tells you the tree continues in a zillion ways, which is no doubt overkill.)
\documentclass{article}
\usepackage{forest}
% Sašo Živanović: https://tex.stackexchange.com/a/296771/
\def\hiddenparcommand{\par}
\forestset{%
declare count register={split here level},
declare toks register={split here interject},
split here level'=-1,
split here interject={},
to widest/.style={
tikz+={\path (\forestregister{tempdima}, \forestoption{y}) -- (\forestregister{tempdimb}, \forestoption{y});},
},
split here/.style={%
split here level'/.option=level,
split here interject={#1},
split tree
},
split tree/.code={%
\forestset{%
draw tree stage/.style={
for root'={
tempdima/.min={x()+min_x()}{tree},
tempdimb/.max={x()+max_x()}{tree},
for tree={%
to widest,
if level/.wrap pgfmath arg={{####1}{label={[text=gray, anchor=north, font=\scriptsize]below:{[cont.]}}}{}}{split_here_level},
if level/.wrap pgfmath arg={{####1}{edge={densely dotted, gray}, edge label={node [font=\scriptsize, pos=0, anchor=south, text=gray] {[cont.]}}}{}}{int((split_here_level)+1)},
},
},
for nodewalk/.wrap pgfmath arg={{draw tree processing order/.style={level<=####1}}{}}{split_here_level},
for root'={draw tree},
TeX/.wrap pgfmath arg={\hiddenparcommand ####1\hiddenparcommand}{split_here_interject},
for nodewalk/.wrap pgfmath arg={{draw tree processing order/.style={level>=####1}}{}}{(split_here_level)+1},
for root'={draw tree},
},
}
}
}
\begin{document}
\begin{forest}
[R
[AAAA1[A2[A3]]]
[B1[B2[B3]]]
]
\end{forest}
\begin{forest}
[R
[AAAA1[A2, split here={to be continued \dots}[A3]]]
[B1[B2[B3]]]
]
\end{forest}
\begin{forest}
[R
[AAAA1, split here={to be continued \dots}[A2[A3]]]
[B1[B2[B3]]]
]
\end{forest}
\begin{forest}
[R
[AAAA1[A2[A3]]]
[B1[B2, split here={to be continued \dots}[B3]]]
]
\end{forest}
\end{document}

EDIT
Proof of concept version allowing multiple splits e.g. for explanations.
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{microtype}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{enumitem}
\setlist[enumerate,1]{label=\bfseries\Alph*,align=left,leftmargin=*, labelsep=1.5em}
\setlist[enumerate,2]{label=\arabic*.,labelindent=1em,labelsep=1.5em, leftmargin=*}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\theoremstyle{definition}
\newtheorem*{sol}{Solution}
\usepackage{forest}
% Sašo Živanović: https://tex.stackexchange.com/a/296771/
\newcommand\hiddenparcommand{\par\noindent}
\newcommand\hiddencommacommand{, }
\forestset{%
declare keylist register={split here levels},
declare keylist register={split here interjects},
declare toks register=split here toks,
split here levels={},
split here interjects={},
to widest/.style={
tikz+={\path (\forestregister{tempdima}, \forestoption{y}) -- (\forestregister{tempdimb}, \forestoption{y});},
},
hide commas/.style={%
split here toks+={\hiddencommacommand},
split here toks+={#1},
},
split here/.style={%
split here levels+/.option=level,
split={#1}{,}{split here toks,hide commas},
split here interjects/.register=split here toks,
split tree
},
split tree/.code={%
\forestset{%
draw tree stage/.style={
for root'={
tempdima/.min={x()+min_x()}{tree},
tempdimb/.max={x()+max_x()}{tree},
for tree={%
to widest,
},
},
tempcountb'=-1,
do until={%
strequal((split_here_levels),"")
}{%
tempkeylistb'={},
tempkeylista'={},
split register={split here levels}{,}{tempcounta,tempkeylistb+},
split register={split here interjects}{,}{temptoksa,tempkeylista+},
split here levels'/.register=tempkeylistb,
split here interjects'/.register=tempkeylista,
% Sašo Živanović: http://chat.stackexchange.com/transcript/message/28484520#28484520
for nodewalk/.wrap 2 pgfmath args={{draw tree processing order/.style={filter={level<=########1}{level()>########2}}}{}}{tempcounta}{tempcountb},
for root'={draw tree},
TeX/.wrap pgfmath arg={\hiddenparcommand ########1\hiddenparcommand}{temptoksa},
tempcountb'/.register=tempcounta,
},
for nodewalk/.wrap pgfmath arg={{draw tree processing order/.style={level>=####1}}{}}{(tempcountb)+1},
for root'={draw tree},
},
}
},
ass/.append style={
before computing xy={l=\baselineskip},
no edge
},
prooftree/.style={
for tree={
child anchor=north,
parent anchor=south
}
},
}
\begin{document}
\subsection*{Exercises 29}
\begin{enumerate}
\item Use QL trees to evaluate the entailment claims (1) to (10) in Exercises
28A.
\begin{enumerate}
\item $\forall x(Fx\supset Gx)\vDash\forall x(Gx\supset Fx)$
\begin{forest}
prooftree
[$\forall x(Fx\supset Gx)$
[$\neg\forall x(Gx\supset Fx)\checkmark$,ass
[$\exists x\neg(Gx\supset Fx)\checkmark$,ass
[$\neg(Ga\supset Fa)\checkmark$,ass
[$Ga$,ass
[$\neg Fa$,ass
[$(Fa\supset Ga)\checkmark$,ass
[$\neg Fa$] [$Ga$]]]]]]]]
\end{forest}
$\neg Fa$ and $Ga$ make the premisses and the negation of conclusion true.
Thus, the entailment is invalid.
\item $\forall x(Fx\supset Gx)\vDash\forall x(\neg Gx\supset\neg Fx)$
\begin{forest}
prooftree
[$\forall x(Fx\supset Gx)$
[$\neg\forall x(\neg Gx\supset\neg Fx)\checkmark$,ass
[$\exists x\neg(\neg Gx\supset\neg Fx)\checkmark$,ass
[$\neg(\neg Ga\supset\neg Fa)\checkmark$,ass
[$\neg Ga$,ass
[$\neg\neg Fa$,ass
[$(Fa\supset Ga)\checkmark$,ass
[$\neg Fa$ [*,ass]] [$Ga$ [*,ass]]]]]]]]]
\end{forest}
Since the tree closes, the entailment is valid.
\item $\forall x\exists yLxy\vDash\forall y\exists xLyx$
\begin{forest}
prooftree
[$\forall x\exists yLxy$
[$\neg\forall y\exists xLyx\checkmark$,ass, split here={This tree gets split later but not quite yet, as you see.}
[$\exists y\neg\exists xLyx\checkmark$,ass
[$\neg\exists xLax\checkmark$,ass
[$\forall x\neg Lax$,ass, split here={Continued}
[$\exists yLay\checkmark$,ass
[$Lab$,ass
[$\neg Lab$,ass [*,ass]]]]]]]]
]
\end{forest}
\item $\forall x((Fx\wedge Gx)\supset Hx)\vDash\forall
x(Fx\supset(Gx\supset Hx))$
\item $(\forall xFx\vee\forall xGx)\vDash\forall(Fx\vee Gx)$
\item $\forall x(Fx\supset Gx),\forall x(\neg Gx\supset Hx)\vDash
\forall x(Fx\supset\neg Hx)$
\item $\exists x(Fx\wedge Gx),\forall x(\neg Hx\supset\neg Gx)\vDash
\exists x(Fx\wedge Hx)$
\item $\forall x\exists y(Fy\supset Gx)\vDash\forall y\exists x(Gx\supset
Fy)$
\item $\forall x\forall y(Lxy\supset Lyx)\vDash\forall xLxx$
\item $\forall x(\exists yLxy\supset\forall zLzx)\vDash\forall x\forall y
(Lxy\supset Lyx)$
\end{enumerate}
\end{enumerate}
\end{document}
