how we write this equation in latex in given form
Asked
Active
Viewed 1,261 times
0
7 Answers
28
With a few shortcut macros it's much easier:
plain TeX version:
\let~\catcode~`86~`j0~`X13~`C1~`D2~`M3jdefX81C~`8113jdefDXZZ81C~
`8113DXYY81CZ81jletDYLLjletYFFjfiYNNjdefYPPjpartialZIZAZBZj{Zj}Y
EEjexpandafterYOOjelseYKKjifxNI818283CL}81NAC82DNBC83Djfuturelet
jTjHDNjHCKjT}L{AOL{BF{DXUUCI)jpCjp)CDDDY VVjoverNjp)818283CKX81X
CP82VP83DOCP^C81D82VjbC81DC83DDFDYRRjrelaxNjb8182Cjd8182RDNjd81%
8283CK83RP82^C81DOP82P83FDY!!uY@@vY##wY$$xYj%%yY&&zXvv81C81^2DMM
!U!$+@U!%+#U!&+jlambda_1jleft(v!U)2! $+v@U)2!%+v#U)2!&jatop+2!@U
)2!C$%D+2@#U)2!C%&D+2!#U)2!C$&Djright)=jnuU)2!&jeqno(1.25)MMjbye
LaTeX version:
\documentclass{article}\begin{document}
\let~\catcode~`86~`j0~`X13~`C1~`D2~`M3jdefX81C~`8113jdefDXZZ81C~
`8113DXYY81CZ81jletDYLLjletYFFjfiYNNjdefYPPjpartialZIZAZBZj{Zj}Y
EEjexpandafterYOOjelseYKKjifxNI818283CL}81NAC82DNBC83Djfuturelet
jTjHDNjHCKjT}L{AOL{BF{DXUUCI)jpCjp)CDDDY VVjoverNjp)818283CKX81X
CP82VP83DOCP^C81D82VjbC81DC83DDFDYRRjrelaxNjb8182Cjd8182RDNjd81%
8283CK83RP82^C81DOP82P83FDY!!uY@@vY##wY$$xYj%%yY&&zXvv81C81^2DMM
!U!$+@U!%+#U!&+jlambda_1jleft(v!U)2!$+v@U)2!%+v#U)2!&jatop+2!@U)
2!C$%D+2@#U)2!C%&D+2!#U)2!C$&Djright)=jnuU)2!&jeqno(1.25)MMjstop
output:
Inspired by David Carlisle's xii :)
Phelype Oleinik
- 70,814
-
8
-
-
@ahorn Sorry, I don't understand what you mean. You didn't find the
texexecutable? – Phelype Oleinik May 20 '19 at 21:11 -
@PhelypeOleinik I just don't know how to run TeX code, so I thought I'd leave a comment. Sorry for the clutter. – ahorn May 20 '19 at 21:52
-
@ahorn No worries, we can delete them later :-) Do you run LaTeX from the command line or from an IDE? If the latter, then which one? TeXMaker? TeXStudio? Another? – Phelype Oleinik May 20 '19 at 23:59
-
I prefer TeXWorks. Sometimes through MiKTeX on Windows, but my main computer uses the TeXWorks package on Linux. – ahorn May 21 '19 at 10:42
-
@ahorn TeXWorks already has options for
pdftex,xetex, andluatex, which all run plain TeX, and the test file above will work on any of them. But if you want Knuth's TeX engine, then here's what you'll do. Open TeXWorks then click theEditmenu Item andPreferences, then on the window that pops up go to theTypesettingtab. In this window there is a listProvessing toolsand in the lower right side of this list there is a+button; click on it and aTool Configurationwindow should open. Continued... – Phelype Oleinik May 21 '19 at 13:02 -
@ahorn ...continuation: Configure it like this: https://i.stack.imgur.com/zqAYO.png then click OK. Now click the
+again and configure the new window like this: https://i.stack.imgur.com/icu2V.png and click OK again and once more. Now in the main windows of TeXWorks, in the list of typesetting tools to the right of the “play” button, you should have aTeXtool and aDVI -> PDFtool. Knuth's TeX produces only DVI output so you can run a file with TeX and then runDVI -> PDFto convert it to PDF. Tell me if it worked :-) – Phelype Oleinik May 21 '19 at 13:02 -
-
@ahorn Indeed, it's always best to ask a question. Feel free to do so ;-) – Phelype Oleinik May 21 '19 at 13:10
6
A variation on the theme, but with a greater emphasis on simplifying the input:
\documentclass{article}
\usepackage{amsmath}
\usepackage{xparse}
\newcommand{\pdiff}{\mathop{}\!\partial}
\ExplSyntaxOn
\NewDocumentCommand{\pder}{omm}
{
\frac{\pdiff\IfValueT{#1}{^{#1}}#2}{\faisal_pder_vars:n { #3 }}
}
\cs_new_protected:Nn \faisal_pder_vars:n
{
\clist_map_inline:nn { #1 } { \pdiff##1 }
}
\ExplSyntaxOff
\begin{document}
\begin{equation}
u\pder{u}{x}+v\pder{u}{y}+w\pder{u}{z}+
\lambda_1
\left(\begin{gathered}
u^2\pder[2]{u}{x^2}+v\pder[2]{u}{y^2}+w^2\pder[2]{u}{z^2}\\
\mspace{-\medmuskip}{}
+2uv\pder[2]{u}{x,y}+2vw\pder[2]{u}{y,z}+2uw\pder[2]{u}{x,z}
\end{gathered}\right)
= \nu\pder[2]{u}{z^2},
\end{equation}
\begin{equation}
\begin{split}
u\pder{u}{x}&+v\pder{u}{y}+w\pder{u}{z}
+\lambda_1\biggl(
u^2\pder[2]{u}{x^2}+v\pder[2]{u}{y^2}+w^2\pder[2]{u}{z^2}
\\
&+2uv\pder[2]{u}{x,y}+2vw\pder[2]{u}{y,z}+2uw\pder[2]{u}{x,z}\biggr)
= \nu\pder[2]{u}{z^2},
\end{split}
\end{equation}
\end{document}
The syntax for \pder is
- optional argument for the order of the derivative (if greater than 1)
- function to differentiate
- list of the variables the derivative is taken with respect to, comma separated
In the first case I used \mspace{-\medmuskip}{}+ in order to have the plus sign correctly spaced. I used gathered instead of pmatrix because it is semantically sounder.
egreg
- 1,121,712
5
Here you go:
\documentclass[10pt,a4paper]{article}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\begin{document}
$u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{\partial z}+\lambda_1\begin{pmatrix}
u^2\frac{\partial^2 u}{\partial x^2}+v\frac{\partial^2 u}{\partial y^2}+w^2\frac{\partial^2 u}{\partial z^2}\\+2uv\frac{\partial^2 u}{\partial x\partial y}+2vw\frac{\partial^2 u}{\partial y\partial z}+2uw\frac{\partial^2 u}{\partial x\partial z}
\end{pmatrix} = v\frac{\partial^2 u}{\partial z^2},$
\end{document}
this will give you:
PS: Welcome to TeX.se, from next time, please provide a MWE.
Raaja_is_at_topanswers.xyz
- 648
- 4
- 20
- 53
3
Here is a start:
\documentclass[]{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
u\frac{\partial u}{\partial x}+...
+\lambda_1
\begin{pmatrix}
u^2 \frac{\partial^2 u}{\partial x^2}+...\\
+ 2 uv \frac{\partial^2 u}{\partial x \partial y}+...
\end{pmatrix} = v \frac{\partial^2 u}{\partial z^2}
\end{equation}
\end{document}
Hafid Boukhoulda
- 8,563
-
3Please, edit your code and replace
...by\dots(or\cdotswhen not between two plus signs). – Sigur Feb 14 '19 at 13:20 -
4@Sigur I have added the three dots to indicate to OP that he has to complete the equation by himself. The final version of the equation should not have dots within it. – Hafid Boukhoulda Feb 14 '19 at 16:59
2
Borrow a little from all answer and make a little change (such as change v to \nu in the right-hand side)
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{equation}
u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{\partial z}+\lambda_1\begin{pmatrix}
u^2\frac{\partial^2 u}{\partial x^2}+v\frac{\partial^2 u}{\partial y^2}+w^2\frac{\partial^2 u}{\partial z^2}\\+2uv\frac{\partial^2 u}{\partial x\partial y}+2vw\frac{\partial^2 u}{\partial y\partial z}+2uw\frac{\partial^2 u}{\partial x\partial z}
\end{pmatrix} = \nu\frac{\partial^2 u}{\partial z^2},
\tag{1.25}
\end{equation}
\end{document}
0
\documentclass{article}
\begin{document}
\[ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}+ w \frac{\partial u}{\partial z} + \lambda_1
\left( \begin{tabular}{c}
$\:\:\:\:\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$\\
$+ 2 u v \frac{\partial^2 u}{\partial x \partial y}+ 2vw \frac{\partial^2 u}{\partial y\partial z}+2wu \frac{\partial^2 u}{\partial z \partial u}$\\\end{tabular} \right) = \nu \frac{\partial^2 u}{\partial z^2}\]
\end{document}
This gives desired output.
-1
$$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\lambda_{1}\left(\begin{array}{c}
u^{2} \frac{\partial^{2} u}{\partial x^{2}}+v^{2} \frac{\partial^{2} u}{\partial y^{2}}+w^{2} \frac{\partial^{2} u}{\partial z^{2}} \\
+2 u v \frac{\partial^{2} u}{\partial x \partial y}+2 v w \frac{\partial^{2} u}{\partial \partial \partial z}+2 u w \frac{\partial^{2} u}{\partial x \partial z}
\end{array}\right)=\nu \frac{\partial^{2} u}{\partial z^{2}}$$
-
1Hi and welcome. I didn't downvote for your answer. Please, expand your answer by giving fully compilable code starting with
\documentclass{}and ending with\end{document}– AndréC Aug 09 '20 at 18:27






texdoc packagenameis a great help. – Keks Dose Feb 14 '19 at 11:58e.g. Have you figured out how to write a gamma on its own? Have you figured out how to write a fraction? How to write du/dz? etc. The more effort you demonstrate you have put in, the more effort others will be willing to put in for you. It also helps us understand precisely which part of the task you need help with.
– falsePockets Feb 15 '19 at 04:49$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\lambda_{1}\left(\begin{array}{c}u^{2} \frac{\partial^{2} u}{\partial x^{2}}+v^{2} \frac{\partial^{2} u}{\partial y^{2}}+w^{2} \frac{\partial^{2} u}{\partial z^{2}} \\ +2 u v \frac{\partial^{2} u}{\partial x \partial y}+2 v w \frac{\partial^{2} u}{\partial y \partial z}+2 u w \frac{\partial^{2} u}{\partial x \partial \tilde{z}}\end{array}\right)=\nu \frac{\partial^{2} u}{\partial z^{2}}$. – projetmbc Apr 27 '21 at 18:27