2

Usage of titling package to manage multiple titles and abstracts results in the following way that the author name and affliations are moving to the right. How to fix it?

enter image description here

\documentclass[a4paper,11pt]{article}
\usepackage{titling}

\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}

\newenvironment{keywords}{\noindent\textbf{Keywords:}}{}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in


\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{\text{#1}}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{\text{#1}}}
\newcommand\@category{}
\setlength{\droptitle}{-5cm}
\pretitle{\begin{center} \huge}
\posttitle{\par\end{center}\vspace{\baselineskip}}
\preauthor{\normalfont\normalsize\begin{center}\begin{tabular}[t]{c}}
\postauthor{\end{tabular}\end{center}\vspace{\baselineskip}}

\renewcommand{\maketitle}{%
    \begin{minipage}{.5\textwidth}
        %       \raggedright
        $\begin{array}{lcl}
        \text{Unique Id} & :& \@uniqueid  \\
        \text{Category} & : & \@category  \\
        \end{array} $
    \end{minipage}
    \begin{minipage}{.5\textwidth}
        \raggedleft
        Received on : \@receivedon \\
        Accepted on : \@acceptedon
    \end{minipage}
    \vskip 1.5em%
    \begin{center}%
        \let \footnote \thanks
        {\LARGE \@title \par}%
        \vskip 1.5em%
        {\large
            \lineskip .5em%
            \begin{tabular}[t]{c}%
                \@author 
            \end{tabular}\par}%
        \vskip 1em%
        %{\large \@date}%
    \end{center}%
    \par
    \vskip 1.5em}
\makeatother





\begin{document}


\part{Abstracts of the Invited Speakers}

\input{InvitedAbstracts/17ICLAA104Abstract}


\clearpage 

\part{Abstracts of the Contributed Speakers}

\input{ContributedAbstracts/17ICLAA064Abstract}

\input{ContributedAbstracts/17ICLAA068Abstract}



\end{document}

Input files are,

% % % % %--------------------------------------------------------------------
% % % % %          Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % %         Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------

\author{\underline{M. Seetharama Gowda}}

\affil{Department of Mathematics and Statistics, University of Maryland,
    Baltimore County, Baltimore, Maryland 21250, USA\\ 

    \email{gowda@umbc.edu}}


% % % % %--------------------------------------------------------------------
    \receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}  

\maketitle

\begin{abstract}
    In matrix theory, various algebraic, fixed point, and degree theory methods have been used to study the solvability of equations of the form $f(X) = Q$, where $f$ is a transformation (possibly nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies over the cone of
    semidefinite matrices. In this talk, we describe a new method based on complementarity ideas. This method gives a unified treatment for transformations studied by Lyapunov, Stein, Lim, Hiller and Johnson, and others. Our method actually works in a more general setting of proper cones and, in particular, on symmetric cones in Euclidean
    Jordan algebras.
\end{abstract}

\begin{keywords}
    solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}

\begin{classification}
    15A24, 90C33
\end{classification}
\begin{thebibliography}{100}
    \bibitem{MGD} Gowda, M. Seetharama, David Sossa, and Av Libertador Bernardo O’Higgins. ``Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones.'' (2016). (http://www.optimization-online.org$/DB_HTML/2017/04/5952.$html).
\end{thebibliography}



    % % % % %--------------------------------------------------------------------
    % % % % %          Title of the Paper and Acknowledgement
    % % % % %--------------------------------------------------------------------
        \title{Stability and convex hulls of matrix powers
        %\thanks{Acknowledgement: The authors thanks the support of so and so project/funding \dots}
        }
    % % % % %--------------------------------------------------------------------
    % % % % %         Authors,, Affiliations and email ids
    % % % % %--------------------------------------------------------------------

    \author[1]{Patrick K. Torres}
    \author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting  Author.}}
    %\author[3]{Author C}  % Author having same Affiliation that of Author A
    %\author[4]{Author D}
    \affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{patrick.torres@wsu.edu}, $^2$\email{tsat@math.wsu.edu}}
    %\affil[3] {Affiliation of Author C. \email{authorc@gmail.com}}
    %\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{authord@gmail.com}}
    % % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}  

        \maketitle

    \begin{abstract}
    Invertibility of all convex combinations of a matrix $A$ and the identity matrix $I$ is equivalent to the real eigenvalues of $A$, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of $A$ and $I$ is equivalent to all of the principal minors of $A$ being positive (i.e., $A$ being a P-matrix). These results are 
    extended to convex combinations of higher powers of $A$ and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of $A$ lying in open sectors of the right-half plane. The ensuing analysis provides a new context for open problems in the theory of matrices with P-matrix powers.
    \end{abstract}

    \begin{keywords}
    P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
    \end{keywords}

    \begin{classification}
    15A48; 15A15
    \end{classification}

    \begin{thebibliography}{100}

    \bibitem{bepl:94}
    A.~Berman and R.~J. Plemmons, {\em Nonnegative Matrices in the
        Mathematical Sciences.} 1994: SIAM, Philadelphia.

    \bibitem{fipt:62}
    M.~Fiedler and V.~Pt\'{a}k.
    On matrices with non-positive off-diagonal elements and
    positive principal minors. {\em Czechoslovak Mathematical Journal}, 22:382--400, 1962.

    \bibitem{fipt:66}
    M.~Fiedler and V.~Pt\'{a}k. Some generalizations of positive definiteness
    and monotonicity. {\em Numerische Mathematik}, 9:163--172, 1966. 

    \bibitem{fhs}
    S.~Friedland, D.~Hershkowitz, and H.~Schneider.
    {\em Matrices whose powers are M-matrices or Z-matrices},
    Transactions of the American Mathematical Society,
    300:233--244, 1988.

    \bibitem{hejo}
    D.~Hershkowitz and C.R.~Johnson.
    {\em Spectra of matrices with P-matrix powers},
    {\em Linear Algebra and its Applications}, 80:159--171, 1986.

    \bibitem{hk}
    D. Hershkowitz and N. Keller. 
    {\em Positivity of principal minors, sign symmetry and stability}, 
    Linear Algebra and its Applications, 364:105--124, 2003.

    \bibitem{hojo:90}
    R.A.~Horn and C.R.~Johnson.
    {\em Matrix Analysis} 1990: Cambridge University Press.

    \bibitem{hojo:91}
    R.A.~Horn and C.R.~Johnson. 
    {\em Topics in Matrix Analysis} 1991: Cambridge University Press.

    \bibitem{jotv1}
    C.R.~Johnson, D.D.~Olesky, M.~Tsatsomeros, and P.~van den Driessche.
    {\em Spectra with positive elementary symmetric functions},
    Linear Algebra and Its Applications, 180:247--262, 1993.

    \bibitem{jt}
    C.R.~Johnson and M.J.~Tsatsomeros.
    {\em Convex sets of nonsingular and P-matrices},
    Linear and Multilinear Algebra, 38:233--239, 1995.

    \bibitem{kell:72}
    R.~Kellogg.
    {\em On Complex eigenvalues of M and P matrices},
    Numerische Mathematik, 19:170--175, 1972.

    \bibitem{Kushel}
    Volha Y. Kushel.
    {\em On the positive stability of $P^2$-matrices},
    Linear Algebra and Its Applications, 503:190--214, 2016.

    \bibitem{pena}
    J.M.~Pena.
    {\em A class of P-matrices with applications to the localization of the
    eigenvalues of a real matrix},
    SIAM Journal on Matrix Analysis and Applications, 22:1027--1037, 2001.

    \end{thebibliography}
Johannes_B
  • 24,235
  • 10
  • 93
  • 248
David
  • 1,964

1 Answers1

4

Your example uses the titling package, and later trashes everything by redefining the title. Do not blame a package for own faults.

The author is set in a c cell, which are never broken. Either, use a cell with a limited width that acts as a paragraph, or use a parbox instead. Or add manual line breaks by using \\ as in a regular tabular.

\documentclass[a4paper,11pt]{article}

\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}
\usepackage{showframe}

\newenvironment{keywords}{\noindent\textbf{Keywords:}}{\par}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{\par}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in


\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}% <- this will fail
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{#1}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{#1}}
\newcommand\@category{}

\renewcommand{\maketitle}{%
\noindent\begin{minipage}{.5\textwidth}%
        %       \raggedright
    \begin{tabular}{@{}l@{ : }l}
        \text{Unique Id} & \@uniqueid  \\
        \text{Category}  & \@category  \\
        \end{tabular} 
    \end{minipage}%
    \begin{minipage}{.5\textwidth}
        \raggedleft
        Received on : \@receivedon \\
        Accepted on : \@acceptedon
    \end{minipage}
    \vskip 1.5em%
    \begin{center}%
        \let \footnote \thanks
        {\LARGE \@title \par}%
        \vskip 1.5em%
        {\large
            \lineskip .5em%
        \parbox{.8\linewidth}{% <----------- parbox here
            \centering
                \@author 
            }%
        }
        \vskip 1em%
        %{\large \@date}%
    \end{center}%
    \par
    \vskip 1.5em}

\makeatother




\begin{document}

% % % % %--------------------------------------------------------------------
% % % % %          Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % %         Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------

\author{\underline{M. Seetharama Gowda}}

\affil{Department of Mathematics and Statistics,\\ University of Maryland,
    Baltimore County, Baltimore, Maryland 21250, USA\\ 

    \email{gowda@umbc.edu}}


% % % % %--------------------------------------------------------------------
    \receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}  

\maketitle

\begin{abstract}
In matrix theory, various algebraic, fixed point, and degree theory
methods have been used to study the solvability of equations of the
form $f(X) = Q$, where $f$ is a transformation (possibly
nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies
over the cone of semidefinite matrices. In this talk, we describe a
new method based on complementarity ideas. This method gives a
unified treatment for transformations studied by Lyapunov, Stein,
Lim, Hiller and Johnson, and others. Our method actually works in a
more general setting of proper cones and, in particular, on
symmetric cones in Euclidean Jordan algebras.
\end{abstract}

\begin{keywords}
    solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}

\begin{classification}
    15A24, 90C33
\end{classification}



\title{Stability and convex hulls of matrix powers}

    \author[1]{Patrick K. Torres}
    \author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting  Author.}}
    %\author[3]{Author C}  % Author having same Affiliation that of Author A
    %\author[4]{Author D}
    \affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{patrick.torres@wsu.edu}, $^2$\email{tsat@math.wsu.edu}}
    %\affil[3] {Affiliation of Author C. \email{authorc@gmail.com}}
    %\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{authord@gmail.com}}
    % % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}  

\maketitle

\begin{abstract}
Invertibility of all convex combinations of a matrix $A$ and the
identity matrix $I$ is equivalent to the real eigenvalues of
$A$, if any, being positive. Invertibility of all matrices
whose rows are convex combinations of the respective rows of
$A$ and $I$ is equivalent to all of the principal minors of $A$
being positive (i.e., $A$ being a P-matrix). These results are
extended to convex combinations of higher powers of $A$ and of
their rows. The invertibility of matrices in these convex hulls
is associated with the eigenvalues of $A$ lying in open sectors
of the right-half plane. The ensuing analysis provides a new
context for open problems in the theory of matrices with
P-matrix powers.
\end{abstract}

\begin{keywords}
        P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
\end{keywords}

\begin{classification}
        15A48; 15A15
\end{classification}


\end{document}

You should use package geometry for the page dimensions and type area.

Johannes_B
  • 24,235
  • 10
  • 93
  • 248
  • Thank you so much for the answer. I didnot notice this..How did I forget!! Lazy I am..Thanks a lot – David Nov 13 '17 at 05:28
  • Kindly look into this question also . https://tex.stackexchange.com/questions/401081/how-to-reset-the-author-list?noredirect=1&lq=1 – David Nov 14 '17 at 07:39