Usage of titling package to manage multiple titles and abstracts results in the following way that the author name and affliations are moving to the right. How to fix it?
\documentclass[a4paper,11pt]{article}
\usepackage{titling}
\usepackage{amsmath,amsfonts,amsthm,dsfont,amssymb,csquotes}
\usepackage[blocks]{authblk}
\newenvironment{keywords}{\noindent\textbf{Keywords:}}{}
\newenvironment{classification}{\noindent\textbf{AMS subject classifications.}}{}
\date{}
\newcommand{\email}[1]{\texttt{\small #1}}
\textheight 7.5in \textwidth 5in
\makeatletter
\newcommand\receivedon[1]{\renewcommand\@receivedon{#1}}
\newcommand\@receivedon{}
\newcommand\acceptedon[1]{\renewcommand\@acceptedon{\underline{\hspace{1.7cm}}#1}}
\newcommand\@acceptedon{}
\newcommand\uniqueid[1]{\renewcommand\@uniqueid{\text{#1}}}
\newcommand\@uniqueid{}
\newcommand\category[1]{\renewcommand\@category{\text{#1}}}
\newcommand\@category{}
\setlength{\droptitle}{-5cm}
\pretitle{\begin{center} \huge}
\posttitle{\par\end{center}\vspace{\baselineskip}}
\preauthor{\normalfont\normalsize\begin{center}\begin{tabular}[t]{c}}
\postauthor{\end{tabular}\end{center}\vspace{\baselineskip}}
\renewcommand{\maketitle}{%
\begin{minipage}{.5\textwidth}
% \raggedright
$\begin{array}{lcl}
\text{Unique Id} & :& \@uniqueid \\
\text{Category} & : & \@category \\
\end{array} $
\end{minipage}
\begin{minipage}{.5\textwidth}
\raggedleft
Received on : \@receivedon \\
Accepted on : \@acceptedon
\end{minipage}
\vskip 1.5em%
\begin{center}%
\let \footnote \thanks
{\LARGE \@title \par}%
\vskip 1.5em%
{\large
\lineskip .5em%
\begin{tabular}[t]{c}%
\@author
\end{tabular}\par}%
\vskip 1em%
%{\large \@date}%
\end{center}%
\par
\vskip 1.5em}
\makeatother
\begin{document}
\part{Abstracts of the Invited Speakers}
\input{InvitedAbstracts/17ICLAA104Abstract}
\clearpage
\part{Abstracts of the Contributed Speakers}
\input{ContributedAbstracts/17ICLAA064Abstract}
\input{ContributedAbstracts/17ICLAA068Abstract}
\end{document}
Input files are,
% % % % %--------------------------------------------------------------------
% % % % % Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{On the solvability of matrix equations over the semidefinite cone}
% % % % %--------------------------------------------------------------------
% % % % % Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------
\author{\underline{M. Seetharama Gowda}}
\affil{Department of Mathematics and Statistics, University of Maryland,
Baltimore County, Baltimore, Maryland 21250, USA\\
\email{gowda@umbc.edu}}
% % % % %--------------------------------------------------------------------
\receivedon{24.08.2017}
\acceptedon{}
\uniqueid{17ICLAA104}
\category{Invited Speaker}
\maketitle
\begin{abstract}
In matrix theory, various algebraic, fixed point, and degree theory methods have been used to study the solvability of equations of the form $f(X) = Q$, where $f$ is a transformation (possibly nonlinear), $Q$ is a semidefinite/definite matrix and $X$ varies over the cone of
semidefinite matrices. In this talk, we describe a new method based on complementarity ideas. This method gives a unified treatment for transformations studied by Lyapunov, Stein, Lim, Hiller and Johnson, and others. Our method actually works in a more general setting of proper cones and, in particular, on symmetric cones in Euclidean
Jordan algebras.
\end{abstract}
\begin{keywords}
solvability, semidefinite cone, complementarity, proper cone, symmetric cone
\end{keywords}
\begin{classification}
15A24, 90C33
\end{classification}
\begin{thebibliography}{100}
\bibitem{MGD} Gowda, M. Seetharama, David Sossa, and Av Libertador Bernardo O’Higgins. ``Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones.'' (2016). (http://www.optimization-online.org$/DB_HTML/2017/04/5952.$html).
\end{thebibliography}
% % % % %--------------------------------------------------------------------
% % % % % Title of the Paper and Acknowledgement
% % % % %--------------------------------------------------------------------
\title{Stability and convex hulls of matrix powers
%\thanks{Acknowledgement: The authors thanks the support of so and so project/funding \dots}
}
% % % % %--------------------------------------------------------------------
% % % % % Authors,, Affiliations and email ids
% % % % %--------------------------------------------------------------------
\author[1]{Patrick K. Torres}
\author[2]{\underline{Michael J. Tsatsomeros}\footnote{Presenting Author.}}
%\author[3]{Author C} % Author having same Affiliation that of Author A
%\author[4]{Author D}
\affil[1]{Department of Mathematics and Statistics, Washington State University, Pullman, USA. $^1$\email{patrick.torres@wsu.edu}, $^2$\email{tsat@math.wsu.edu}}
%\affil[3] {Affiliation of Author C. \email{authorc@gmail.com}}
%\affil[4]{Department of Statistics, Manipal University, Manipal, India. \email{authord@gmail.com}}
% % % % %--------------------------------------------------------------------
\receivedon{10.09.2017}
\acceptedon{}
\uniqueid{17ICLAA147}
\category{Invited Speaker}
\maketitle
\begin{abstract}
Invertibility of all convex combinations of a matrix $A$ and the identity matrix $I$ is equivalent to the real eigenvalues of $A$, if any, being positive. Invertibility of all matrices whose rows are convex combinations of the respective rows of $A$ and $I$ is equivalent to all of the principal minors of $A$ being positive (i.e., $A$ being a P-matrix). These results are
extended to convex combinations of higher powers of $A$ and of their rows. The invertibility of matrices in these convex hulls is associated with the eigenvalues of $A$ lying in open sectors of the right-half plane. The ensuing analysis provides a new context for open problems in the theory of matrices with P-matrix powers.
\end{abstract}
\begin{keywords}
P-matrix, nonsingularity, positive stability, matrix powers, matrix hull
\end{keywords}
\begin{classification}
15A48; 15A15
\end{classification}
\begin{thebibliography}{100}
\bibitem{bepl:94}
A.~Berman and R.~J. Plemmons, {\em Nonnegative Matrices in the
Mathematical Sciences.} 1994: SIAM, Philadelphia.
\bibitem{fipt:62}
M.~Fiedler and V.~Pt\'{a}k.
On matrices with non-positive off-diagonal elements and
positive principal minors. {\em Czechoslovak Mathematical Journal}, 22:382--400, 1962.
\bibitem{fipt:66}
M.~Fiedler and V.~Pt\'{a}k. Some generalizations of positive definiteness
and monotonicity. {\em Numerische Mathematik}, 9:163--172, 1966.
\bibitem{fhs}
S.~Friedland, D.~Hershkowitz, and H.~Schneider.
{\em Matrices whose powers are M-matrices or Z-matrices},
Transactions of the American Mathematical Society,
300:233--244, 1988.
\bibitem{hejo}
D.~Hershkowitz and C.R.~Johnson.
{\em Spectra of matrices with P-matrix powers},
{\em Linear Algebra and its Applications}, 80:159--171, 1986.
\bibitem{hk}
D. Hershkowitz and N. Keller.
{\em Positivity of principal minors, sign symmetry and stability},
Linear Algebra and its Applications, 364:105--124, 2003.
\bibitem{hojo:90}
R.A.~Horn and C.R.~Johnson.
{\em Matrix Analysis} 1990: Cambridge University Press.
\bibitem{hojo:91}
R.A.~Horn and C.R.~Johnson.
{\em Topics in Matrix Analysis} 1991: Cambridge University Press.
\bibitem{jotv1}
C.R.~Johnson, D.D.~Olesky, M.~Tsatsomeros, and P.~van den Driessche.
{\em Spectra with positive elementary symmetric functions},
Linear Algebra and Its Applications, 180:247--262, 1993.
\bibitem{jt}
C.R.~Johnson and M.J.~Tsatsomeros.
{\em Convex sets of nonsingular and P-matrices},
Linear and Multilinear Algebra, 38:233--239, 1995.
\bibitem{kell:72}
R.~Kellogg.
{\em On Complex eigenvalues of M and P matrices},
Numerische Mathematik, 19:170--175, 1972.
\bibitem{Kushel}
Volha Y. Kushel.
{\em On the positive stability of $P^2$-matrices},
Linear Algebra and Its Applications, 503:190--214, 2016.
\bibitem{pena}
J.M.~Pena.
{\em A class of P-matrices with applications to the localization of the
eigenvalues of a real matrix},
SIAM Journal on Matrix Analysis and Applications, 22:1027--1037, 2001.
\end{thebibliography}
