11

I saw my Chinese classmate reading a book whose cover page is really fancy, though I don’t know the Chinese characters on it.enter image description here How could I create a cover page in my own classnotes like that?

  • There is a rather straightforward part, the graphics, which can be done with TikZ (for instance) and a part which requires familiarity with the Chinese characters. It seems to me that anyone trying to answer this will have to know TikZ and these characters. –  Feb 19 '19 at 03:02
  • @marmot I think these characters is book name, these characters are not important. – user450201 Feb 19 '19 at 03:09
  • Thank you for a really good question. I'm going to be up all night, trying to recreate what @marmot has done. – GermanShepherd Feb 19 '19 at 05:41
  • @GermanShepherd Sorry that this question confused you so long time. – user450201 Feb 19 '19 at 09:20
  • This book (and thus also its cover) can be downloaded from on http://www.wwli.url.tw/downloads/Modulform.pdf, and is available under a CC BY 4.0 license. –  Feb 19 '19 at 13:20
  • @Pakk There is no source code. So... – user450201 Feb 19 '19 at 14:17
  • 1
    @user450201: My comment was not intended as an answer. But be aware that books and covers are protected by copyrights. This book (and its cover) is allowed to be used, as long as the author is credited, and the license is given. You did not give the license, so you did not follow copyright rules. I tried to help you by mentioning the license. –  Feb 19 '19 at 14:31

1 Answers1

38

Can one do something like this? Yes. Most likely the curves in the upper right part are are some sort of Apollonius (Golden Ratio?) circles but I was too lazy to look them up.

\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{intersections,decorations.text}
\definecolor{c1}{RGB}{62, 97, 127}
\definecolor{c2}{RGB}{104, 182, 182}
\definecolor{c3}{RGB}{107, 190, 190}
\definecolor{c4}{RGB}{100, 172, 174}
\begin{document}
\thispagestyle{empty}
\begin{tikzpicture}[overlay,remember picture,font=\sffamily\bfseries]
 \draw[very thick,c4,name path=big arc] ([xshift=-2mm]current page.north) arc(150:285:11)
 coordinate[pos=0.225] (x0);
 \begin{scope}
  \clip ([xshift=-2mm]current page.north) arc(150:285:11) --(current page.north
  east);
  \fill[c4!50,opacity=0.25] ([xshift=4.55cm]x0) circle (4.55);
  \fill[c4!50,opacity=0.25] ([xshift=3.4cm]x0) circle (3.4);
  \fill[c4!50,opacity=0.25] ([xshift=2.25cm]x0) circle (2.25);
  \draw[very thick,c4!50] (x0) arc(-90:30:6.5);
  \draw[very thick,c4] (x0) arc(90:-30:8.75);
  \draw[very thick,c4!50,name path=arc1] (x0) arc(90:-90:4.675);
  \draw[very thick,c4!50] (x0) arc(90:-90:2.875);
  \path[name intersections={of=big arc and arc1,by=x1}];
  \draw[very thick,c4,name path=arc2] (x1) arc(135:-20:4.75);
  \draw[very thick,c4!50] (x1) arc(135:-20:8.75);
  \path[name intersections={of=big arc and arc2,by={aux,x2}}];
  \draw[very thick,c4!50] (x2) arc(180:50:2.25);
 \end{scope} 
 \path[decoration={text along path,text color=c4,
                 raise = -2.8ex,
                 text  along path,
                 text = {|\sffamily\bfseries|02/18/2019},
                 text align = center,
             },
             decorate
         ] ([xshift=-2mm]current page.north) arc(150:245:11);
 %
 \begin{scope}
  \path[clip,postaction={fill=c3}]
  ([xshift=2cm,yshift=-8cm]current page.center) rectangle ++ (4.2,7.7);
  \fill[c2] ([xshift=0.5cm,yshift=-8cm]current page.center)
   ([xshift=0.5cm,yshift=-8cm]current page.center)  arc(180:60:2)
    |- ++ (-3,6) --cycle;
  \draw[very thick,c4] ([xshift=-1.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \draw[very thick,c4] ([xshift=0.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \draw[very thick,c4] ([xshift=2.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \draw[very thick,c4] ([xshift=4.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \fill[red] ([xshift=2.5cm,yshift=-8cm]current page.center) +(60:2) circle(1.5mm)
  node[above right=2mm]{$\displaystyle\rho=\frac{1+\sqrt{-3}}{2}$};
 \end{scope}
 %
 \fill[c1] ([xshift=2cm,yshift=-8cm]current page.center) rectangle ++ (-12.7,7.7);
 \node[text=white,anchor=west,scale=5,inner sep=0pt] at
 ([xshift=-8cm,yshift=-3.25cm]current page.center) {Some text};
 \node[text=white,anchor=west,scale=2.5,inner sep=0pt] at
 ([xshift=-8cm,yshift=-6cm]current page.center) {Some text};
 %
 \draw[gray,line width=5mm] 
 ([xshift=2mm,yshift=-1mm]current page.south west) rectangle ([xshift=-2mm,yshift=1mm]current
 page.north east);
\end{tikzpicture}
\end{document}

enter image description here

Addendum: version with inputs by Henri Menke and Raaja (thanks!).

\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz}
\usetikzlibrary{intersections,decorations.text}
\definecolor{c1}{RGB}{62, 97, 127}
\definecolor{c2}{RGB}{104, 182, 182}
\definecolor{c3}{RGB}{107, 190, 190}
\definecolor{c4}{RGB}{100, 172, 174}
\definecolor{c5}{RGB}{95, 162, 162}
\begin{document}
\thispagestyle{empty}
\begin{tikzpicture}[overlay,remember picture,font=\sffamily\bfseries]
 \draw[ultra thick,c4,name path=big arc] ([xshift=-2mm]current page.north) arc(150:285:11)
 coordinate[pos=0.225] (x0);
 \begin{scope}
  \clip ([xshift=-2mm]current page.north) arc(150:285:11) --(current page.north
  east);
  \fill[c4!50,opacity=0.25] ([xshift=4.55cm]x0) circle (4.55);
  \fill[c4!50,opacity=0.25] ([xshift=3.4cm]x0) circle (3.4);
  \fill[c4!50,opacity=0.25] ([xshift=2.25cm]x0) circle (2.25);
  \draw[ultra thick,c4!50] (x0) arc(-90:30:6.5);
  \draw[ultra thick,c4] (x0) arc(90:-30:8.75);
  \draw[ultra thick,c4!50,name path=arc1] (x0) arc(90:-90:4.675);
  \draw[ultra thick,c4!50] (x0) arc(90:-90:2.875);
  \path[name intersections={of=big arc and arc1,by=x1}];
  \draw[ultra thick,c4,name path=arc2] (x1) arc(135:-20:4.75);
  \draw[ultra thick,c4!50] (x1) arc(135:-20:8.75);
  \path[name intersections={of=big arc and arc2,by={aux,x2}}];
  \draw[ultra thick,c4!50] (x2) arc(180:50:2.25);
 \end{scope} 
 \path[decoration={text along path,text color=c4,
                 raise = -2.8ex,
                 text  along path,
                 text = {|\sffamily\bfseries|02/18/2019},
                 text align = center,
             },
             decorate
         ] ([xshift=-2mm]current page.north) arc(150:245:11);
 %
 \begin{scope}
  \path[clip,postaction={fill=c3}]
  ([xshift=2cm,yshift=-8cm]current page.center) rectangle ++ (4.2,7.7);
  \draw[c5,ultra thick,fill=c2] ([xshift=0.5cm,yshift=-8cm]current page.center)
   ([xshift=0.5cm,yshift=-8cm]current page.center)  arc(180:60:2)
    |- ++ (-3,6) --cycle;
  \draw[ultra thick,c5] ([xshift=-1.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \draw[ultra thick,c5] ([xshift=0.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \draw[ultra thick,c5] ([xshift=2.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \draw[ultra thick,c5] ([xshift=4.5cm,yshift=-8cm]current page.center) 
  arc(180:0:2);
  \fill[red] ([xshift=2.5cm,yshift=-8cm]current page.center) +(60:2) circle(1.5mm)
  node[above
  right=2mm,text=c5!80!black]{$\rho:=\dfrac{1+\sqrt{-3}}{2}$};
 \end{scope}
 %
 \fill[c1] ([xshift=2cm,yshift=-8cm]current page.center) rectangle ++ (-12.7,7.7);
 \node[text=white,anchor=west,scale=5,inner sep=0pt] at
 ([xshift=-8cm,yshift=-3.25cm]current page.center) {Some text};
 \node[text=white,anchor=west,scale=2.5,inner sep=0pt] at
 ([xshift=-8cm,yshift=-6cm]current page.center) {Some text};
 %
 \draw[gray,line width=5mm] 
 ([xshift=2mm,yshift=-1mm]current page.south west) rectangle ([xshift=-2mm,yshift=1mm]current
 page.north east);
\end{tikzpicture}
\end{document}

enter image description here

  • 2
    Such a nice answer...great... – MadyYuvi Feb 19 '19 at 04:45
  • \sqrt{-3} I have the feeling that there is a typo on the original cover. Also, instead of using \displaystyle you could use \dfrac from amsmath. – Henri Menke Feb 19 '19 at 05:15
  • I don't think it's Apollonian circles, because they don't intersect: https://en.wikipedia.org/wiki/Apollonian_gasket – Henri Menke Feb 19 '19 at 05:18
  • 1
    @HenriMenke I believe that the cover is correct. \rho is the sixth root of unity, i.e. \rho=(1+\sqrt{-3})/2=(1+\mathrm{i}\sqrt{3})/2=\exp(2\pi\mathrm{i}/6). I agree that these are not the standard Apollonius circles, which is why I wrote "some sort of Apollonius circles". While I believe to understand the inlay figure (which is the fundamental domain of the torus parameter \tau with \rho being the nontrivial selfdual point, I do not remember what the circles are even though I should.) –  Feb 19 '19 at 05:24
  • @HenriMenke I crossed out Apollonius, you are right, thanks, the name is inappropriate here. –  Feb 19 '19 at 05:32
  • ... and another creation of our favorite marmot, congrats!! (Btw the OP's question was good) – manooooh Feb 19 '19 at 05:39
  • By the way, how did you get the color value of c1,c2,c3,c4? Is there any tools or software that lends a hand? – user450201 Feb 19 '19 at 09:26
  • @user450201 Yes, there are some tools. I was using Just Color Picker on MacOS. –  Feb 19 '19 at 10:24
  • Chinese characters: 模形式初步 李文威著 –  Feb 19 '19 at 13:07
  • @marmot Thanks! I find a little tool colorpix which is also helpful. – user450201 Feb 19 '19 at 13:11