I want to reproduce the hyperboloid of two sheet $− x^2/a^2 + y^2/b^2 − z^2/c^2 = 1$ in grayscale.
Below I have used the following parametrization:
x = a * sinh(θ) * cos(ϕ), y = b * sinh(θ) * sin(ϕ), z = ±c * cosh(θ)
\documentclass{article}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
xlabel=$x$,
ylabel=$y$,
zlabel=$z$,
domain=0:360,
y domain=0:360,
samples=30,
view={60}{30},
]
\addplot3[surf, shader=interp, variable=\u, variable y=\v] ({sinh(\u) * cos(\v)}, {sinh(\u) * sin(\v)}, {cosh(\u)});
\addplot3[surf, shader=interp, variable=\u, variable y=\v] ({sinh(\u) * cos(\v)}, {sinh(\u) * sin(\v)}, -{cosh(\u)});
\end{axis}
\end{tikzpicture}
\end{document}
I have used colormap={bw}{gray(0cm)=(0); gray(1cm)=(1)} to get the fig in grayscale but it was not as prominent as the given fig. Also need to draw the traces.
Edited based on John Kormylo's suggestion:
\documentclass[tikz, margin=40]{standalone}
\usetikzlibrary{patterns}
\usepackage{tikz}
\begin{document}
\begin{tikzpicture}[scale=2]
\pgfmathsetmacro{\e}{1.09} % eccentricity
\pgfmathsetmacro{\a}{3}
\pgfmathsetmacro{\b}{(\asqrt((\e)^2-1)}
\draw plot[domain=-2:2] ({\acosh(\x)},{\bsinh(\x)});
\draw plot[domain=-2:2] ({-\acosh(\x)},{\bsinh(\x)});
\draw (11.34,0) ellipse (1.2cm and 4.7cm);
\draw (-11.34,0) ellipse (1.2cm and 4.7cm);
\draw[fill=gray] (7.34,0) ellipse (1.2cm and 2.85cm);
\draw [color=black, line width = 0.6pt] (-5, -5) -- (5, 5) node [right] {$x$};
\draw [color=black, line width = 0.6pt] (-14, 0) -- (14, 0) node [right] {$y$};
\draw [color=black, line width = 0.6pt] (0, -5) -- (0, 5) node [right] {$z$};
\draw plot[variable=\t,samples=1000,domain=-72.85:76.1] ({3sec(\t)},{.2tan(\t)});
\draw [color=black, line width = 0.6pt] (10.115, -.66) -- (12.54, .835);
\draw plot[domain=-1.89:2.1086] ({-3cosh(\x)},{.2sinh(\x)});
plot[variable=\t,samples=1000,domain=-72.85:76.1] ({3sec(\t)},{.2*tan(\t)});
\draw [color=black, line width = 0.6pt] (-10.32, -.65) -- (-12.72, .825);
\end{tikzpicture}
\end{document}


