Here is an exact solution (via barycentric coordinate system as in this answer to the question Can PSTricks or others draw the 4 common tangent lines of 2 “disjoint” circles without having to do extra calculations?):

\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\begin{tikzpicture}[inner sep=0,outer sep=0]
% radii
\pgfmathsetmacro{\rbig}{20mm}
\pgfmathsetmacro{\rsmall}{1mm}
% the two circles
\node[draw,circle,xshift=\rsmall+\rbig+1mm,minimum size=2*\rbig pt] (big) {};
\node[draw,circle,minimum size=2*\rsmall pt] (small) {};
% the good point !
\coordinate (c) at (barycentric cs:big=-\rsmall,small=\rbig);
\fill[red](c) circle (.2pt);
% the two tangents
\draw (tangent cs:node=small,point={(c)},solution=2) -- (tangent cs:node=big,point={(c)},solution=2);
\draw (tangent cs:node=small,point={(c)},solution=1) -- (tangent cs:node=big,point={(c)},solution=1);
\end{tikzpicture}
\end{document}
Edit:
The following code computes the difference between Percusse's solution (a good approximation) and this solution (an "exact" solution):
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\begin{document}
\begin{tikzpicture}[inner sep=0,outer sep=0]
\pgfmathsetmacro{\rbig}{20mm}
\pgfmathsetmacro{\rsmall}{1mm}
\node[draw,circle,xshift=\rsmall+\rbig+1mm,minimum size=2*\rbig pt] (big) {};
\node[draw,circle,minimum size=2*\rsmall pt] (small) {};
\coordinate (c) at (barycentric cs:big=-\rsmall,small=\rbig);
\coordinate (exact small 1) at (tangent cs:node=small,point={(c)},solution=1);
\coordinate (approx small 1) at (tangent cs:node=small,point={(big.south)},solution=2);
\coordinate (exact big 1) at (tangent cs:node=big,point={(c)},solution=1);
\coordinate (approx big 1) at (tangent cs:node=big,point={(small.south)},solution=1);
% the difference
\path let \p1=($(exact small 1) - (approx small 1)$),
\p2=($(exact big 1) - (approx big 1)$) in
\pgfextra{
\typeout{small circle difference:\x1,\y1}
\typeout{big circle difference:\x2,\y2}
};
\end{tikzpicture}
\end{document}
And from the log:
small circle difference:-0.6035pt,0.73969pt
big circle difference:1.43744pt,-2.58029pt
inner sepkey! thanks for the lightening fast answer! Spot on. – Sebastian Jan 21 '12 at 07:17tangent csaround in internet (including thetikzmanual) and all are sloppy, without specifyingouter sep=0. – Pygmalion Aug 27 '22 at 16:38