Isbell duality

Isbell conjugacy (a.k.a. Isbell duality or Isbell adjunction) (named after John R. Isbell[1][2]) is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986.[3][4] That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding.[5][6] Also, Lawvere (1986, p. 169) says that; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".[7]

Definition

Yoneda embedding

The (covariant) Yoneda embedding is a covariant functor from a small category into the category of presheaves on , taking to the contravariant representable functor: [1][8][9]

and the co-Yoneda embedding[1][10][8][11] (a.k.a. contravariant Yoneda embedding[12][note 1] or the dual Yoneda embedding[17]) is a contravariant functor (a covariant functor from the opposite category) from a small category into the category of co-presheaves on , taking to the covariant representable functor:

Every functor has an Isbell conjugate[1] , given by

In contrast, every functor has an Isbell conjugate[1] given by

Isbell duality

Origin of symbols and : Lawvere (1986, p. 169) says that; "" assigns to each general space the algebra of functions on it, whereas "" assigns to each algebra its “spectrum” which is a general space.
note:In order for this commutative diagram to hold, it is required that E is co-complete.[18][19][20][21]

Isbell duality is the relationship between Yoneda embedding and co-Yoneda embedding;

Let be a symmetric monoidal closed category, and let be a small category enriched in .

The Isbell duality is an adjunction between the categories; .[3][1][22][23][10][24]

The functors of Isbell duality are such that and .[22][25][note 2]

See also

References

  1. (Baez 2022)
  2. (Di Liberti 2020, 2. Isbell duality)
  3. (Lawvere 1986, p. 169)
  4. (Rutten 1998)
  5. (Melliès & Zeilberger 2018)
  6. (Willerton 2013)
  7. (Space and quantity in nlab)
  8. (Yoneda embedding in nlab)
  9. (Valence 2017, Corollaire 2)
  10. (Isbell duality in nlab)
  11. (Valence 2017, Définition 67)
  12. (Di Liberti & Loregian 2019, Definition 5.12)
  13. (Riehl 2016, Theorem 3.4.6.)
  14. (Starr 2020, Example 4.7.)
  15. (Opposite functors in nlab)
  16. (Pratt 1996, §.4 Symmetrizing the Yoneda embedding)
  17. (Day & Lack 2007, §9. Isbell conjugacy)
  18. (Di Liberti 2020, Remark 2.3 (The (co)nerve construction).)
  19. (Kelly 1982, Proposition 4.33)
  20. (Riehl 2016, Remark 6.5.9.)
  21. (Imamura 2022, Theorem 2.4)
  22. (Di Liberti 2020, Remark 2.4)
  23. (Fosco 2021)
  24. (Valence 2017, Définition 68)
  25. (Di Liberti & Loregian 2019, Lemma 5.13.)

Bibliography

  • Avery, Tom; Leinster, Tom (2021), "Isbell conjugacy and the reflexive completion" (PDF), Theory and Applications of Categories, 36: 306–347, arXiv:2102.08290
  • Baez, John C. (2022), "Isbell Duality" (PDF), Notices Amer. Math. Soc., 70: 140–141, arXiv:2212.11079
  • Day, Brian J.; Lack, Stephen (2007), "Limits of small functors", Journal of Pure and Applied Algebra, 210 (3): 651–663, arXiv:math/0610439, doi:10.1016/j.jpaa.2006.10.019, MR 2324597, S2CID 15424936.
  • Di Liberti, Ivan (2020), "Codensity: Isbell duality, pro-objects, compactness and accessibility", Journal of Pure and Applied Algebra, 224 (10), arXiv:1910.01014, doi:10.1016/j.jpaa.2020.106379, S2CID 203626566
  • Fosco, Loregian (22 July 2021), (Co)end Calculus, Cambridge University Press, arXiv:1501.02503, doi:10.1017/9781108778657, ISBN 9781108746120, S2CID 237839003
  • Gutierres, Gonçalo; Hofmann, Dirk (2013), "Approaching Metric Domains", Applied Categorical Structures, 21 (6): 617–650, arXiv:1103.4744, doi:10.1007/s10485-011-9274-z, S2CID 254225188
  • Shen, Lili; Zhang, Dexue (2013), "Categories enriched over a quantaloid: Isbell adjunctions and Kan adjunctions" (PDF), Theory and Applications of Categories, 28 (20): 577–615, arXiv:1307.5625
  • Isbell, J. R. (1960), "Adequate subcategories", Illinois Journal of Mathematics, 4 (4), doi:10.1215/ijm/1255456274
  • Isbell, John R. (1966), "Structure of categories", Bulletin of the American Mathematical Society, 72 (4): 619–656, doi:10.1090/S0002-9904-1966-11541-0, S2CID 40822693
  • Kelly, Gregory Maxwell (1982), Basic concepts of enriched category theory (PDF), London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge-New York, ISBN 0-521-28702-2, MR 0651714.
  • Lawvere, F. W. (1986), "Taking categories seriously", Revista Colombiana de Matemáticas, 20 (3–4): 147–178, MR 0948965
  • Lawvere, F. William (February 2016), "Birkhoff's Theorem from a geometric perspective: A simple example", Categories and General Algebraic Structures with Applications, 4 (1): 1–8
  • Melliès, Paul-André; Zeilberger, Noam (2018), "An Isbell duality theorem for type refinement systems", Mathematical Structures in Computer Science, 28 (6): 736–774, arXiv:1501.05115, doi:10.1017/S0960129517000068, S2CID 2716529
  • Riehl, Emily (2016), Category Theory in Context, Dover Publications, Inc Mineola, New York, ISBN 9780486809038
  • Rutten, J.J.M.M. (1998), "Weighted colimits and formal balls in generalized metric spaces", Topology and Its Applications, 89 (1–2): 179–202, doi:10.1016/S0166-8641(97)00224-1
  • Sturtz, Kirk (2018), "The factorization of the Giry monad", Advances in Mathematics, 340: 76–105, arXiv:1707.00488, doi:10.1016/j.aim.2018.10.007
    • Sturtz, K. (2019). "Erratum and Addendum: The factorization of the Giry monad". arXiv:1907.00372 [math.CT].
  • Pratt, Vaughan (1996), "Broadening the denotational semantics of linear logic", Electronic Notes in Theoretical Computer Science, 3: 155–166, doi:10.1016/S1571-0661(05)80415-3
  • Wood, R.J (1982), "Some remarks on total categories", Journal of Algebra, 75 (2): 538–545, doi:10.1016/0021-8693(82)90055-2
  • Willerton, Simon (2013), "Tight spans, Isbell completions and semi-tropical modules" (PDF), Theory and Applications of Categories, 28 (22): 696–732, arXiv:1302.4370
  • Imamura, Yuki (2022), "Grothendieck Enriched Categories", Applied Categorical Structures, 30 (5): 1017–1041, arXiv:2105.05108, doi:10.1007/s10485-022-09681-1

Footnote

  1. Note that: the contravariant Yoneda embedding written in the article is replaced with the opposite category for both domain and codomain from that written in the textbook.[13] See opposite functor.[14][15] In addition, this pair of Yoneda embeddings is collectively called the two Yoneda embeddings.[16]
  2. For the symbol Lan, see left Kan extension.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.