You have to wind the wire rope on the left at number 1 and then wind it again at number 2, is there a way to draw a curve and follow it?
Asked
Active
Viewed 399 times
2
-
have you tried with a Curve modifier for your rope? (also please avoid "help me" and "I'm going crazy") – moonboots Feb 03 '22 at 09:17
-
sorry, i'm don't speak english, so i missed here's rule. i never do that words – Maldodook Feb 03 '22 at 09:21
-
1There is a tutorial for rigging a drawbridge here. Unfortunately the instructor is explaining the technique in English with a heavy French accent which you might find difficult to understand. – John Eason Feb 03 '22 at 09:30
-
Another tutorial here. – John Eason Feb 03 '22 at 09:57
-
The drawbridge toot fails to fix the chain to the spool (the coil slides along it) Check out one of the answers here – Robin Betts Feb 03 '22 at 12:43
-
https://blender.stackexchange.com/questions/76756/animate-winding-a-ribbon-rope-cable-around-a-cylinder – Duarte Farrajota Ramos Feb 03 '22 at 13:39
2 Answers
2
add cylinder
R X 90
make sure your add-on is enabled
Shift A -> Curve -> Curve Spirals -> Archimedian
change settings like this:
Tab -> edit mode
select this vertex
E Z 8
Tab
Shift A -> Mesh -> Cylinder
Tab -> CTRL R
Tab
select Curve
CTRL A -> Location
select cylinder, add modifier:
enter 50 in z location, keyframe location on frame 1
enter 30 in z location , keyframe location at frame 50
result:
Chris
- 59,454
- 6
- 30
- 84
-
1Here I go, supplementing one of your answers again. I hope you don't mind. I'd written mine, when yours turned up and did the job. :) – Robin Betts Feb 04 '22 at 09:02
-
1
2
A couple of notes to add to @Chris's very comprehensive answer.
- If this is a friction drive, the animation of the cable is simple. It's just a translation of the cable along its deformation axis, down a static curve, by which it is deformed.
- The curve can be constructed to existing spools, by E extruding the ends of a Curve Spirals > Archimedean curve, taking the thickness of the cable into account:
- The distance the rope has to be translated per revolution of the large spool with a spiral diameter of
Dis strictlysqrt((D*pi)^2 + h^2), wherehis the height per wind of the spiral. But ifhis small,D*piwill probably do. - The rate at which the small spool with diameter
dmust rotate isD/dtimes the rate at which the large spool rotates.
If you need the animation to loop...
There are some added constraints, if you don't want miles of rope.
- The pattern on the rope must match at the beginning and end of the temporal loop. In the example below, the loop is at a 180⁰ turn of the large spool. Perhaps the easiest way to achieve the match is to make the cable an array of elements, each one of which has a length of
D*pi(or, strictly, again, the expression above) and ensure a match between the ends of the elements, successfully merged by the Array modifier. - So there is no jump in the animation of the small spool, its visible features must loop at the same time as those of the large spool. Most simply,
dcan divideDby a whole number.
Robin Betts
- 76,260
- 8
- 77
- 190
















