The definition of Paillier cryptosystem is the same as the one on wikipedia.
Now the random integer $g$ is chosen of the form $$g=(1+n)^{\alpha}\beta^{n}\bmod n$$, where $\alpha$ and $\beta$ are in $\mathbb{Z}_{n}^{*}$. Prove that $$m\;=\;L(c^{\lambda}\bmod n^{2})\mu\bmod n\;=\;\frac{L(c^{\lambda})\bmod n^{2}}{L(g^{\lambda})\bmod n^{2}}\bmod n$$, where $L(x)=\displaystyle\left\lfloor\frac{x-1}{n}\right\rfloor$ denotes the quotient when $x-1$ is divided by $n$ and $\mu=\left(L\left(g^{\lambda}\bmod n^{2}\right)\right)^{-1}\bmod n$.
(Carmichael's theorem: For any $r\in \mathbb{Z}_{n^{2}}^{*}$, we have $r^{n\lambda}\equiv1\bmod n^{2}$.)
The above is the question description. The following is what I came up with.
\begin{align*} L(c^{\lambda}\bmod n^{2}) &= \frac{c^{\lambda}\bmod n^{2}-1}{n} \\ &= \frac{g^{m\lambda}r^{n\lambda}\bmod n^{2}-1}{n} \\ &= \frac{(g^{m\lambda}-1)r^{n\lambda}\bmod n^{2}}{n} \\ &= \frac{g^{m\lambda}-1 \bmod n^{2}}{n} \end{align*} \begin{align*} L(g^{\lambda}\bmod n^{2}) &= \frac{g^{\lambda}\bmod n^{2}-1}{n} \\ &= \frac{g^{\lambda}-1 \bmod n^{2}}{n} \end{align*}
But I have no idea how to proceed. I still haven't used the formula for $g$. I think the solution may involve some finite field theorems but I really cannot recall any.