Here scheme $\Pi$ is $\epsilon $ - perfectly secret. Given that encryption scheme $\Pi$ = $(\mathrm{Gen}, \mathrm{Enc}, \mathrm{Dec})$ over $(\mathcal K,\mathcal M,\mathcal C)$ is called $\epsilon $ - perfectly secret if for any distribution over $\mathcal M$, any $m \in M $ and any $ c \in C$,
$|Pr[M=m|C=c] - Pr[M=m]|<\epsilon$
then how to prove that , $|\mathcal K|\geq (1 - \epsilon)|\mathcal M|$
I am not getting idea how to proceed as here $\epsilon$ can be anything i.e non-negligible or negligible both.