Say $\alpha$ is a complex random variable, then which one of the following expressions is correct?
$\mathbb{E}[\alpha^2]$ or
$\mathbb{E}[\alpha \alpha^*]$?
Say $\alpha$ is a complex random variable, then which one of the following expressions is correct?
$\mathbb{E}[\alpha^2]$ or
$\mathbb{E}[\alpha \alpha^*]$?
The correct expression for the mean power of a complex random variable $\alpha=x+jy$ is $$ \begin{align} \bar P &= \operatorname E\left[\alpha \alpha^*\right]\\ &= \operatorname E\left[x^2 + y^2\right]\\ &= \operatorname E\left[x^2\right] + \operatorname E\left[y^2\right]\\ &= \bar P_\mathrm{x} + \bar P_\mathrm{y} \end{align} $$
In other words, the mean power of a complex random variable is the sum of the mean powers of its real and imaginary part, respectively. In contrast, expression no. 1 from your question evaluates to $$ \begin{align} \operatorname E\left[\alpha^2\right] &= \operatorname E\left[x^2 + j2xy - y^2\right]\\ &= \operatorname E\left[x^2\right] - \operatorname E\left[y^2\right] + \operatorname E\left[j2xy\right]\\ &= \bar P_\mathrm{x} - \bar P_\mathrm{y} + j2\operatorname E\left[xy\right] \end{align} $$ Note that for the special case of $x$ and $y$ being uncorrelated $\operatorname E\left[xy\right]=E\left[x\right]E\left[y\right]$. If, in addition, $x$ or $y$ has zero mean $E\left[xy\right]=0$.