I am trying to learn about KL Transform. I found this code. I am struggling to understand how does [v{m},d{m}]=eig(img_covariance); differ from [v2,d2]=eig(img_covariance);, The former returns two matrices of eigenvectors, from which the second (v{2}) is equal to v2. But what is the first one (v{1})?
edit
[v{m},d{m}]=eig(img_covariance) returns
v =
{
[1,1] =
Columns 1 through 7:
-0.1527903 0.0106995 0.3204241 -0.3014430 0.4620154 -0.1584354 -0.6386134
-0.3718077 -0.0753980 -0.2576876 0.4059503 -0.0168094 0.1363366 0.1615412
-0.0891184 -0.4056759 -0.5148526 -0.4301809 -0.0897367 0.5362251 -0.2778373
0.0766357 -0.6346157 0.2506626 -0.2101475 -0.5053394 -0.4192726 0.0629048
0.2579611 -0.4219268 0.1987889 0.6808135 0.0608045 0.2408053 -0.4032314
0.6361581 -0.0522523 -0.5627216 0.0296577 0.2797814 -0.4008548 -0.0401111
0.5044345 -0.0534348 0.3831791 -0.2251705 0.1993863 0.5035803 0.3835550
0.3144897 0.4932372 0.0046623 0.0055295 -0.6333316 0.1439403 -0.4166628
Column 8:
0.3696135
0.7615181
-0.0676208
0.2219948
-0.1677195
0.1856510
0.3235740
0.2496506
[1,2] =
Columns 1 through 7:
0.3696135 -0.6386134 -0.1584354 0.4620154 -0.3014430 0.3204241 0.0106995
0.7615181 0.1615412 0.1363366 -0.0168094 0.4059503 -0.2576876 -0.0753980
-0.0676208 -0.2778373 0.5362251 -0.0897367 -0.4301809 -0.5148526 -0.4056759
0.2219948 0.0629048 -0.4192726 -0.5053394 -0.2101475 0.2506626 -0.6346157
-0.1677195 -0.4032314 0.2408053 0.0608045 0.6808135 0.1987889 -0.4219268
0.1856510 -0.0401111 -0.4008548 0.2797814 0.0296577 -0.5627216 -0.0522523
0.3235740 0.3835550 0.5035803 0.1993863 -0.2251705 0.3831791 -0.0534348
0.2496506 -0.4166628 0.1439403 -0.6333316 0.0055295 0.0046623 0.4932372
Column 8:
-0.1527903
-0.3718077
-0.0891184
0.0766357
0.2579611
0.6361581
0.5044345
0.3144897
}
d =
{
[1,1] =
Diagonal Matrix
Columns 1 through 7:
1.1972e-16 0 0 0 0 0 0
0 2.9076e-05 0 0 0 0 0
0 0 1.8829e-03 0 0 0 0
0 0 0 2.2148e-03 0 0 0
0 0 0 0 3.6073e-03 0 0
0 0 0 0 0 5.4175e-03 0
0 0 0 0 0 0 2.1080e-02
0 0 0 0 0 0 0
Column 8:
0
0
0
0
0
0
0
2.9485e-02
[1,2] =
Diagonal Matrix
Columns 1 through 7:
1.1972e-16 0 0 0 0 0 0
0 2.9076e-05 0 0 0 0 0
0 0 1.8829e-03 0 0 0 0
0 0 0 2.2148e-03 0 0 0
0 0 0 0 3.6073e-03 0 0
0 0 0 0 0 5.4175e-03 0
0 0 0 0 0 0 2.1080e-02
0 0 0 0 0 0 0
Column 8:
0
0
0
0
0
0
0
2.9485e-02
}
My question is, what is the first matrix in v?

v2is same as the matrix inv{2}. But what isv{1}? – Suvi Oct 28 '20 at 11:36