Given a variable in time $u_{k}$, and an other variable f which represents the frequencies in a range [a,b]:
$$|\mathcal F \left \lbrace u_{k}\right \rbrace |^{2}=f^{-5/3}\tag{1}$$
where $\mathcal F$ stands for fast Fourier transform.
Now, I want to find $x$ knowing that:
$$|\mathcal F \left \lbrace u_{k}^{2}\right \rbrace|= f^{x}\tag{2}$$
I can isolate $x$ as:
$$x=\frac{\ln(|\mathcal F \left \lbrace u_{k}^{2}\right \rbrace |)}{\ln(f)}\tag{3}$$
I can find $u$ using (1):
$$u=\mathcal F^{-1}(\sqrt{(f^{-5/3})}) \tag{4}$$
On the consequence $x$ is:
$$x=\frac{\ln(|\mathcal F \left \lbrace ( \mathcal F^{-1} \left \lbrace \sqrt{(f^{-5/3})} \right \rbrace )^{2} \right \rbrace|)}{\ln(f)} \tag{5}$$
Is there any way in which I can simplify $x$?? I am stuck with this problem for a lot of weeks...