The matlab and python code below seems to do what you need.

The plot above has the output voltage in black, the input current in magenta, and the estimated current in green circles. As you can see the input and estimated currents overlay pretty well.
The main problem is that the transfer function:
$$ H(s) = \frac{R}{sRC + 1} $$
does not have a proper inverse.
So I used the suggestion here and replaced $s$ with
$$\frac{s}{1 + 0.0001s}$$
which approximates the derivative $s$ with something that's proper.
Matlab code
syms s;
R = 10;
C = 1* 10^-6;
H = R/(R*C*s + 1);
[Hnum,Hden] = numden(H);
Htf = tf(sym2poly(Hnum), sym2poly(Hden));
Hinv = inv(H);
% https://stackoverflow.com/a/20539050/12570
proper_derivative = s/(1 + 0.0001*s);
Hinv2 = subs(Hinv,{s},{proper_derivative});
[Hinv2_num,Hinv2_den] = numden(Hinv2);
Hinv2tf = tf(sym2poly(Hinv2_num),sym2poly(Hinv2_den));
t = [0:999]*0.01;
i_in = cumsum(randn(1,1000));
v_out = lsim(Htf, i_in, t);
i_est = lsim(Hinv2tf, v_out, t);
clf
plot(v_out, 'k');
hold on;
plot(i_est, 'go');
plot(i_in, 'm');
Python code
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
R = 10
C = 0.000001
H = signal.lti(R,[R*C,1])
t = np.linspace(0, 5, 1000)
i_in = np.cumsum(np.random.normal(0,1,1000))
tout, v_out, x = signal.lsim(H, i_in, t)
Hinv = signal.lti([R*C, 1], R)
s/(1000000*(s/10000 + 1)) + 1/10
Hinv2 = signal.lti([11, 100000], [100, 1000000])
tout2, i_est, x2 = signal.lsim(Hinv2, v_out, t)
plt.plot(t, v_out, 'k')
plt.plot(t, i_est, 'go')
plt.plot(t, i_in, 'm')