In the Audio EQ CookBook there is $$\omega_0 = 2\pi\cdot\frac{f_0}{f_s}$$so frequency warping will be $$\omega_r = \frac{2}{T}\tan(\frac{\omega_0}{2})$$
Then $$s \longleftarrow \frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}} = \frac{\omega_r}{\tan\frac{\omega_0}{2}}\frac{1-z^{-1}}{1+z^{-1}}$$ But in the in the CookBook, we're given: $$s \longleftarrow \frac{1}{\tan\frac{\omega_0}{2}}\frac{1-z^{-1}}{1+z^{-1}}$$
What does $\omega_0 = 2\pi\cdot\frac{f_0}{f_s}$ exactly mean?
@if they comment on the same post – OverLordGoldDragon Feb 07 '23 at 11:20